PART 2: MODALITY

I. MODAL EXPRESSIONS IN DIFFERENT CATEGORIES

Auxiary verbs.

(1) a. You may be excused.
b. I must be hungry.
c. You can't do that.
d. You have to come home at 9.00
e. I could have been rich.
f. I had to be in Amsterdam.
f. I might have known that.

Adverbials.

(2) a. Possibly, John met Mary in Amsterdam.
b. I don't necessarily think that was a good idea.
c. Maybe John will come to the party.

Adjectives.

(3) a. This is a possible counterexample.
b. John is a potential candidate.
c. It is possible that John will try to reach you.
d. John was able to come.

Suffixes: -able.
(4) a. This glass is highly breakable.
b. This is unthinkable.
c. The rent is payable at the end of the month. ! zahlbar but not betaalbaar

Generic present

(5) This car goes $200 \mathrm{~km} / \mathrm{h} /$ This car does $300 \mathrm{~km} / \mathrm{h} /$

Fred eats horsemeat (but he hasn't yet)

Progressive

(5a) I am drawing a circle
(5b) Professor Lupin was creating a boggard when he was interrupted.

Counterfactual conditionals.

(6) a. If she hadn't left me, I wouldn't be so miserable now.
b. If Verdi and Bizet had been co-patriots, Bizet might have been italian.

II. MODALS CREATE INTENSIONAL CONTEXTS

Substitution of extensions (=extensionality) is not valid.

(7) a. Proust could have been the author of Ulysses.
b. The author of Ulyssess is the author of Finnegans Wake.
do not entail
c. Proust could have been the author of Finnegans Wake.
(8) a. If Henrico Granados had written Ulysses, then the author of Ulysses would have died on m.s Essex.
b. The author of Ulysses is James Joyce.
do not entail
c. If Henrico Granados had written Ulysses, James Joyce would have died on m.s. Essex.

De dicto-de re ambiguities.

(9) I could have been married to a Swede.

Situation 1:

Helga and I considered marriage. In the end we decided not to. (7) is true. de re. Situation 2:
There was a time, when I was "into" Sweden. If I had met a Swedish girl then (which I didn't), I might have proposed marriage. (7) is true. de dicto.
(10) Every suspect may be innocent.
a. For each suspect, the possibility that that suspect is innocent has to be kept open (though we may know for sure that one of them did it): de re.
b. We have to keep open the possibility that the one who did it is not among our suspects. de dicto.

Ambiguities with negation:

(1) a. You can not love it, but it is completely unique $[\gamma]$ ambiguous reading a: it is unloveable to anybody reading b : there are those that don't love it b. You can't love it, but is is completely unique reading a: it is unloveable to anybody

$$
\begin{aligned}
& \text { not - can } \\
& \text { can - not } \\
& \text { not ambiguous } \\
& \text { not - can }
\end{aligned}
$$

III. INTERACTION OF MODALS WITH \neg, \wedge, \vee

I will use the modals could have and had to as examples.
We assume, for ease of examples, that we restrict ourselves to natural models in which:

I stayed \Leftrightarrow I didn't leave \quad STAY $(\mathrm{I}) \Leftrightarrow \neg$ LEAVE(I)
In our formal language we use:

- for necessity, had to, must
$\diamond \quad$ for possibility, could have, may

Interaction with negation:

(11) a. I couldn't have stayed.
$\neg \checkmark \neg$ LEAVE(I)
b. I had to leave.
\square LEAVE(I)
(11a) \Leftrightarrow (11b)
(12)
a. I could have stayed. $\quad \diamond \neg \operatorname{LEAVE}(\mathrm{I})$
b. I didn't have to leave. $\quad \neg \square$ LEAVE(I)
(12a) \Leftrightarrow (12b)
(13) a. I couldn't have left.
$\neg \diamond$ LEAVE(I)
b. I had to stay.
$\square \neg$ LEAVE(I)
$(13 a) \Leftrightarrow(13 b)$
(14) a. I could have left.
\diamond LEAVE(I)
b. I didn't have to stay.
$\neg 口 \neg \operatorname{LEAVE}(\mathrm{I})$ $(14 a) \Leftrightarrow(14 b)$

Interaction with conjunction and disjunction.

(1) I could have sung or danced.
(1) $\diamond(\operatorname{SING}(\mathrm{I}) \vee \operatorname{DANCE}(\mathrm{I}))$
(2) I could have sung or I could have danced.
(2) \diamond SING(I) $\vee \diamond$ DANCE(I)
(3) I could have sung and I could have danced.
(3) \diamond SING(I) $\wedge \diamond$ DANCE (I)
(4) I could have sung and danced.
(4) $\diamond(\mathrm{SING}(\mathrm{I}) \wedge \operatorname{DANCE}(\mathrm{I}))$

As always, (3) \Rightarrow (2), and (2) does not entail (3).
-Look at (3) and (4).
Clearly, (4) \Rightarrow (3): If I could have sung and danced, I could have sung, etc.
But (3) does not entail (4).
I am the kind of person who can sing, and who can dance, but, like Gerald Ford, I can do only one thing at a time. (3) is true, but (4) is false.
cf also:
(15) a. I could have stayed and I could have left.
b. I could have stayed and left.
(15a) can easily be true, but (15b) is a contradiction, so (15a) does not entail (15b).
(1) I could have sung or danced.
(2) I could have sung or I could have danced.
(3) I could have sung and I could have danced.
(4) I could have sung and danced.
(1) $\diamond(\operatorname{SING}(\mathrm{I}) \vee \operatorname{DANCE}(\mathrm{I}))$
(2) \diamond SING $(\mathrm{I}) \vee \diamond$ DANCE (I)
(3) \diamond SING(I) $\wedge \diamond$ DANCE(I)
(4) $\diamond(\operatorname{SING}(\mathrm{I}) \wedge \operatorname{DANCE}(\mathrm{I}))$
-Look at (1) and (2).
If I could have sung, then I could have sung or danced, etc.
So (2) \Rightarrow (1).
In several kinds of contexts, we may feel that (1) entails (3).

But not in all!

I know that either dancing was allowed and singing forbidden, or singing was allowed and dancing forbidden. But I don't remember which. (1) is true, but (3) is false.
Hence (1) does not entail (3).
$(1) \Rightarrow(2)$: If I could have sung or danced, and I couldnt' have sung, then I could have danced.
So: (1) $\Leftrightarrow(2)$.

We get the pattern:
(1) $\Leftrightarrow(2)$
SOME
\Uparrow
(3)
介
(4)
(1) I had to sing or dance.
(2) I had to sing or I had to dance.
(3) I had to sing and I had to dance.
(4) I had to sing and dance.
(3) \Rightarrow (2), (2) doesn't entail (3).

Clearly (3) \Leftrightarrow (4):
If I had to sing and dance, I had to sing.
If I had to sing and I had to dance, I had to do both.
(2) \Rightarrow (1)

If I had to sing, I had to sing or dance, etc.
But (1) does not entail (2).
The club membership prescribes that each member chooses to sing a song or dance a dance, but there is no prescription that it has to be a song, nor that it has to be a dance.
(1) is true, (2) is false.
cf.
(16) a. The coin had to come down heads or tails.
b. The coin had to come down heads or the coin had to come down tails.
(16a) expresses that the coin has to land on one of its sides.
(16b) expresses that the coin is tampered with (or being influenced).
Clearly, (16a) does not entail (16b).
We get the pattern:

```
    (1) EVERY
    介
    (2)
    介
(3) \Leftrightarrow(4)
```

$$
\begin{array}{ll}
\text { We conclude: } & \text { Modals are quantifiers. } \\
& \square \text { is a universal quantifier. } \\
& \diamond \text { is an existential quantifier. }
\end{array}
$$

But if \square and \diamond are quantifiers, there got to be things that they quantify over.
We call them possibilities.
Hence there is evidence for quantification over possibilities in natural language.
Terminology: possibilities $=$ alternatives $=$ alternative situations $=$ possible situations $=$ possible worlds.

I will use the latter terminology, althought sometimes we think of worlds, sometimes of world-times, sometimes just of times, sometimes of world-time-contexts.
Montague call them with a neutral term indices.
We can also call them parameters of variation.
Idea: $\square \varphi$ is true iff φ is true in every possible world.
$\Delta \varphi$ is true iff φ is true in some possible world.

Gottfried Wilhelm Leibniz introduced the idea of possible worlds in the context of a philosophic study of the notion of necessity in the $17^{\text {th }}$ century.

Rudolf Carnap revived the idea in Meaning and Necessity 1947, analyzing necessity as truth in all models (treating models as possible situations).

But, C. I. Lewis had started the study of modal logic in 1912, and Lewis introduced different modal systems, in which necessity and possibility had different properties. This could not be dealt with in Carnap's analysis, it only deals with logical necessity.

By the mid 1950s various logicians were playing with similar ideas to resolve these problems and provide a Tarski style semantics for the modal logics of C. I. Lewis. I mention Jaakko Hintikka, Richard Montague, Stig Kanger, Evert Beth.

But the person who solved the problems systematically and provided provably correct and complete semantics for the different modal systems, and for intuitionistic logic as well was a teenager: Saul Kripke.
(Classical papers, the first published when he was 19:
A Completeness Theorem in Modal Logic 1959
Semantical Considerations on Modal Logic 1963
Semantical analysis of Intuitionistic Logic 1963)
Possible world semantics

Possible world semantics explains intensionality and de dicto-de re ambiguities.

-Intensionality.

We evaluate John walks in a situation (= assign a truth value relative to a world).
The extension (truth value) of John walks varies, depending on which possible situation (world) we are looking at.

The intension of John walks is the pattern of variation of the extension of John walks across situations (worlds).

The intension of John walks specifies for each possible situation what the truth value of John walks is in that situation. This is a function from worlds to truth values.

An extensional context is a context which is only sensitive to the extension of what fills the context:

Example: negation: $\neg(\ldots)$
The truth value of $\neg(\varphi)$ in possible world w depends only on the truth value of φ in w.

An intensional context is a context which is sensitive to the intension of what fills the context, the pattern of variation of the extension of what fills the context across possible worlds.

The modal operators \square and \diamond describe properties of the pattern of variation of the extension across possible worlds.
(Just like $\forall x$ and $\exists x$ describe properties of the pattern of variation of the extension across resettings of the value of x in the assignment function)

Thus, to determine the truth value of $\square \varphi$ and $\nabla \varphi$ in world w, it is not sufficient to know the truth value of φ in w; we need to know the truth value of φ in other worlds.

If α and β have the same extension in world w, that doesn't guarantee that they have the same extension in every other world.

This means that , while $\varphi(\alpha)$ and $\varphi[\beta / \alpha]$ have the same truth value in world w, they may well have different truth values in other worlds.

Consequently, the truth values of $\square \varphi(\alpha)$ and $\square \varphi[\beta / \alpha]$ in world w may be different (the same for $\diamond \varphi(\alpha)$ and $\diamond \varphi[\beta / \alpha])$.

Consequently, \square and \diamond are intensional contexts.

-de dicto-de re ambiguities.

\square and \diamond are quantifiers over possible worlds. As quantifiers, we expect the same kind of scope interactions we find for normal quantifiers.
(10) Every suspect may be innocent.
a. De dicto: $\quad \Delta \forall \mathrm{x}[\operatorname{SUSPECT}(\mathrm{x}) \rightarrow$ INNOCENT(x)]

There is a possible situation where all of the suspects are innocent.
b. De re: $\quad \forall \mathrm{x}[\operatorname{SUSPECT}(\mathrm{x}) \rightarrow \diamond \operatorname{INNOCENT}(\mathrm{x})]$

For each suspect, there is a possible situation where that suspect is innocent.
Thus, de dicto-de re ambiguities with modals reduce to scope ambiguities.

IV. VARIABILITY AND CONTEXT DEPENDENCY OF MODALS

(1) I could have married you, but now I can't anymore.
(2) Before they changed the law, I had to get a visa, but after, I could come without a visa.

Observation: what is possible varies with time.
(3) I am not able to play the saxophone.
(3) is context dependent: the nature of the modality depends on the context.
(3a) Skill.
In view of the fact that I never learned how to play, I am not able to play the saxophone.
(3b) Opportunity.
In view of the fact that my instrument was put on a plane to Ipamena, I am not able to play the saxophone.
(3c) Disablement.
In view of the fact that my fingers are frozen, I am not able to play the saxophone.
(3d) Limitation.
In view of the fact that it is 3.00 am , and my neighbour is a light-sleeping, irritable heavy-weight, I am not able to play the saxophone.
etc.
(3) can have a different truth value dependent on which modality is meant.

Consequently, what is possible varies with the nature of the modality.
Contradiction test:
(4) a. Can you play the saxophone?
b. I can and I can't.
c. In view of A I can, in view of B I can't.
(4b) need not be a contradiction, because it can be resolved as (4c).
Note:
(5) a. I play, even though I am not able to (play).
b. \#I lift the fridge, even though I am not able to (lift the fridge).
(5a) involves different senses of play. This is shown by the infelicity of (5b).

Epistemic modality: In view of what we know and don't know.
Deontic modality: In view of what is commanded and allowed.
Ability modality: (also called dynamic modality) In view of our capacities and limitations.
may, must
(6) a. I may have told John this.
b. I must have told John this.

John may be in Amsterdam right now.
As far as I know, he may be anywhere
Epistemic modality: natural
(7) a. You may walk on the grass.
b. You must stay on the sidewalk.

Deontic modality: easily possible
(8) a. You may play the clarinet.
b. You must play the clarinet.

Ability modality: impossible
(8a) does not mean that you have the ability, capacity to play the clarinet

	Epistemic	Deontic	Ability
may, must	$\checkmark \checkmark$	\checkmark	$\#$

can, has to
(9) a. I can tell you that you're gonna have a problem.
b. I can't tell you who did it (because I don't know)
c. John can't be the murderer

Epistemic modality: easily possible
(10) a. You can take a cookie.
b. You can't take a chocolate.

Deontic modality: natural
(11) a. I can lift a refrigerator.
b. I can't lift a washing machine.

Ability modality: also possible

	Epistemic	Deontic	Ability
can, must	$\checkmark \checkmark$	\checkmark	$\#$
can, has to	\checkmark	$\checkmark \checkmark$	\checkmark

be able to

(12) a. I am not able to tell you who is the murderer, because I don't know.
b. I am not able to play the clarinet, because there is a law against it.
c. He is able to be anywhere.
be able to can only have an epistemic or deontic effect indirectly: in so far as lack of knowledge or a prescription limits opportunity.
(12') a. \checkmark Because I am not able to get down the stairs, I have to stay at home . Ability
b. ?Because I am not able to get down the stairs, I must stay at home. Not clear that this is ability.

Epistemic modality: impossible Deontic modality: impossible Ability modality: natural.

	Epistemic	Deontic	Ability
can, must	$\checkmark \checkmark$	\checkmark	$\#$
can, has to	\checkmark	$\checkmark \checkmark$	\checkmark
be able to	\#?	\#?	$\checkmark \checkmark$

To show this in a different way, compare be able to with can.
(13) Everybody can be the lucky winner.
a. $\forall x[\diamond \operatorname{WINNER}(\mathrm{x})]$
b. $\Delta \forall \mathrm{x}[\operatorname{WINNER}(\mathrm{x})]$

Reading (13a) allows epistemic, deontic or ability interpretations.
Reading (13b) does not allow an ability interpretation.
We can paraphrase this reading of (13a) as (13c):
(13) c. It can turn out to be the case that everybody is the lucky winner.
and (13c) does not have an ability interpretation.
(14) Everybody is able to be the lucky winner.
a. $\forall \mathrm{x}[\diamond \operatorname{WINNER}(\mathrm{x})]$
b. $\Delta \forall \mathrm{x}[\operatorname{WINNER}(\mathrm{x})] \quad$ Impossible.

Reading (14a) does not allow an epistemic interpretation.
Reading (14b) is impossible, as can be seen in the paraphrase in (14c):
(14) c. \#It is able to be the case that everybody is the lucky winner.

Explanation:

Ability modality is subject dependent: \rangle_{x}
Epistemic modality is not subject dependent: \diamond
be able to expresses subject dependent modality.
can can express subject dependent or subject independent modality.
Consequence:
The modal can scope over the subject iff the modal is not subject dependent.
Reason: variable x in ∇_{x} would be free:
\# $\diamond_{\mathrm{x}} \forall \mathrm{x}[\operatorname{WINNER(x)]}$

So what we get is:
(13) Everybody can be the lucky winner.
$\mathrm{a}_{1} . \forall \mathrm{x}[\diamond \operatorname{WINNER}(\mathrm{x})]$
$\mathrm{a}_{2} . \forall \mathrm{x}\left[\Delta_{\mathrm{x}} \operatorname{WINNER}(\mathrm{x})\right]$
$\mathrm{b}_{1} . \diamond \forall \mathrm{x}[\operatorname{WINNER}(\mathrm{x})]$
b_{2}. \# $\rangle_{\mathrm{x}} \forall \mathrm{x}[\operatorname{WINNER}(\mathrm{x})]$
The (a) interpretation allows an episitemic interpretation (by a_{1}) and an ability interpretation (by a2).

The (b) interpretation allows an epistemic interpretation, but not an ability interpretation.
(14) Everybody is able to be the lucky winner.
$\forall \mathrm{x}\left[\Delta_{\mathrm{x}} \operatorname{WINNER}(\mathrm{x})\right]$
(14) only allows a narrow scope ability interpretation.

One more type of modality:

Circumstantial modality: in view of the circumstances.
(20) (In view of the laws of physics), the ball that I throw up must come back to earth.

Conclusion: which possible worlds restrict the modal quantifier varies with time and the nature of the modality.

Different interpretations of the modals have different entailment patterns.

Ability.

(15) a. (In view of my lack of musical education), I am not able to play the bassoon. entails
b. I don't play the bassoon.

```
(15a): \(\neg \diamond\) PLAY(I) \(\quad=\quad \square \neg \operatorname{PLAY}(\mathrm{I})\)
(15b): \(\neg \mathrm{PLAY}(\mathrm{I})\)
Hence: \(\square \neg \mathrm{PLAY}(\mathrm{I}) \Rightarrow \neg \mathrm{PLAY}(\mathrm{I})\)
```

Ability: $\square \varphi \Rightarrow \varphi$

Deontic.

(16) a. (In view of the law), you can't walk on the grass.

does not entail

b. You don't walk on the grass.
(16a): $\neg \diamond$ WALK $(\mathrm{YOU}) \quad=\quad \square \neg W A L K(Y O U)$
(16b): \neg WALK (YOU)
Hence: $\square \neg$ WALK (YOU) does not entail \neg WALK (YOU)
Deontic: $\square \varphi$ does not entail φ

Epistemic.

(17) a. (In view of the argument Hercule Poirot made), Bill must be the murderer.
b. Bill is the murderer.
(17a) ם MURDERER(BILL)
(17b) MURDERER(BILL)
If anything, (17b) entails (17a): (17b) is a stronger statement.
Epistemic:(?) $\varphi \Rightarrow \square \varphi$

Direct and indirect evidence:

I know my digestive system by introspection (direct), yours only by external clues (indirect)
(18) a. I am hungry. Natural
b. You are hungry. Impolite
(19) a. I must be hungry. As if I deduce from external clues
b. You must be hungry. Natural

The statement without the modal expresses direct epistemic evidence, the statement with the modal expresses indirect epistemic evidence.
Since direct evidence is stronger than indirect evidence, we get the effect in (17).

V. MODAL BASES AS ACCESSIBILITY RELATIONS (Kripke models)

Conclusions so far:

1. We associate with natural language modals quantifiers over possible worlds.
2. For each natural language modal it is lexically determined what the force of that quantifier is:

Modal Force: can, could, may, be able to, possibly are existential quantifiers over possible worlds.
must, has to, had to, neccesarily are universal quantifiers over possible worlds.
3. The quantification is contextually restricted:
what the relevant alternatives are that we quantify over varies with time and depends on the nature of the modality.
The latter we call the modal base (Kratzer 1983, the Notional Category of Modality):
The context makes available a modal base which restricts the quantification.
4. Modals vary in what modal bases are available for them:
i.e. must, may: epistemic, deontic modal base, not ability modal base.
be able to: not epistemic, deontic modal base, subject dependent ability modal base.
etc.

What is a modal base?
A modal base M determines for each world (and moment of time) the set of alternative worlds that are relevant for the modal quantification.

An epistemic modal base determines what is known, what isn't known, what is compatible with our knowledge, and what isn't in a situation.

Idea: The epistemic modal base associates with a situation the set of all worlds compatible with what we know.

W

W: the set of all worlds.
K : the set of worlds compatible with what we know.
φ follows from what we know iff φ is true in all worlds compatible with what we know.

W

W: the set of all worlds.
K : the set of all worlds compatible with what we know.
φ : the set of all worlds where φ is true.
φ is compatible with what we know $\operatorname{iff} \varphi$ is true in some world compatible with what we know.

W

W: the set of all worlds.
K : the set of all worlds compatible with what we know. φ : the set of all worlds where φ is true.

Hence φ is incompatible with what we know iff φ is false in all worlds compatible with what we know.

W

W: the set of all worlds.
K : the set of all worlds compatible with what we know. φ : the set of all worlds where φ is true.

We don't know whether φ iff both φ and $\neg \varphi$ are compatible with what we know, and this means that in some of the worlds compatible with what we know φ is true, in the others $\neg \varphi$ is true.

A deontic modal base determines what is commanded, what is allowed in a situation.
Idea: The deontic modal base associates with a situation the set of all worlds compatible with what is commanded, the (contextually given) 'law'.
φ follows from the law iff φ is true in all worlds compatible with the law. φ is compatible with the law iff φ is true in some world compatible with the law. Hence φ is incompatible with the law iff φ is false in all worlds compatible with the law.

Note: the real world is not necessarily compatible with the law, in fact, in most cases it isn't. This means that the set of worlds compatible with the law will not usually include the real world.

And this means that if φ is true in all worlds compatible with the law, it doesn't follow that φ is true in the real world.
(This is going to mean that, on the deontic interpretation, $\square \varphi$ does not entail φ).

In general:

A modal base M associates with every world \mathbf{w} a set of worlds, $\mathbf{M}_{\mathbf{w}}$, which is the set of all worlds compatible with the content of M in w.

Equivalently:
A modal base M is a relation between possible worlds.
$\mathbf{M}(\mathbf{w}, \mathbf{v})$ means: $\mathbf{v} \in \mathrm{M}_{\mathrm{w}}$
We call such relations between possible worlds accessibility relations. (Kripke 1959).
$\mathbf{M}(\mathbf{w}, \mathbf{v})$ means: world v is accessible from world w , according to the content of M.

If M is, say, a deontic modal base, then $\mathrm{M}(\mathrm{w}, \mathrm{v})$ means:
v is deontically accessible from w
v is deontically accessible from w iff v is one of the possible situations that has to be considered when we are asking what is forbidden and what is allowed.

The set of all deontically accessible worlds in w , is the set of all worlds, relevant for w , where no law that is commanded in w by M is broken.

This means, for example, that if it is a law in w that you are not allowed to walk on the grass, then in all worlds, deontically accessible from w, nobody walks on the grass.

Similarly, if M is epistemic accessibility, then $\mathrm{M}(\mathrm{w}, \mathrm{v})$ means: in v nothing happens that we know in w is not the case.

If M_{d} is an ability modal base for d , then $\mathrm{M}_{\mathrm{d}}(\mathrm{w}, \mathrm{v})$ means:
in v nothing happens that is beyond the ability of d in w.
Note, we can, in context, distinguish different subkinds of modal bases.
Also modal bases may overlap.
cf:
(20) a. (In view of the laws of physics), the ball that I throw up must come back to earth.
Circumstantial modal base.
b.(In view of what we know about the laws of physics), the ball that I throw up must come back to earth.
Circumstantial epistemic modal base.

Also, modal bases can have an ordering relation on them (Kratzer 1983):
(21) a. You must give to the poor.

Modal base: deontic.
In every deontically accessible world you give to the poor.
b. You ought to give to the poor.

Modal base: deontic.
Ordering relation: The ideal behaviour of a virtuous person in an ideal situation. Not: In every deontically accessible world you give to the poor.
(Most religions have that much common sense.)
But: In every deontically accessible world which is an ethically ideal world you give to the poor.

In every deontically accessible situation in which the yoke of financial pressures of the real world is lifted and you have high ethical standards, you give to the poor.

In sum:

We associate with a modal a modal force and, in context, a modal base (accessibility relation) that can be expressed by that modal.
The modal base restricts the quantification of the modal force to quantification over worlds that are accessible, according to the modal base.

VI. L6, THE LANGUAGE OF MODAL PREDICATE LOGIC (Kripke 1959)

The language of modal predicate logic, L_{6} is our language L_{4} with two new syntactic clauses:
(1) If $\varphi \in$ FORM, then $\square \varphi \in$ FORM
(2) If $\varphi \in$ FORM, then $\nabla \varphi \in$ FORM

This gives us formulas of the form:

$$
\begin{aligned}
& \exists \mathrm{x}[\mathrm{P}(\mathrm{x}) \wedge \diamond \mathrm{R}(\mathrm{x}, \mathrm{x})] \\
& \square \forall \mathrm{x}[\mathrm{P}(\mathrm{x}) \rightarrow \diamond \mathrm{R}(\mathrm{x}, \mathrm{x})]
\end{aligned}
$$

To keep things simple, we will only discuss the case where there is one modal base available.

We specify the semantics for L_{6}.

Models.

A model for L_{6} is a structure: $\mathrm{M}=\left\langle\mathrm{W}_{\mathrm{M}}, \mathrm{R}_{\mathrm{M}}, \mathrm{D}_{\mathrm{M}}, \mathrm{F}_{\mathrm{M}}\right\rangle$ where:

1. W_{M} is a non-empty set, the set of all possible worlds.
2. $\mathrm{R}_{\mathrm{M}} \subseteq \mathrm{W}_{M} \times \mathrm{W}_{M} . \mathrm{R}_{M}$, the accessibility relation, is a relation between possible worlds. The modal base.
3. D_{M} is a non-empty set, the domain of possible individuals.
4. F_{M} is the interpretation function for the lexical items.
F_{M} assigns to every lexical item an extension in every world (since in this language, extensions of expressions vary from world to world).

This means that F_{M} is a function from lexical items and worlds to extensions.
a. $\mathrm{F}_{\mathrm{M}}: \mathrm{CON} \times \mathrm{W}_{\mathrm{M}} \rightarrow \mathrm{D}_{\mathrm{M}}$
for every individual constant $\mathrm{c} \in \mathrm{CON}$ and every world $\mathrm{w} \in \mathrm{W}_{\mathrm{M}}$:
$\mathrm{F}_{\mathrm{M}}(\mathrm{c}, \mathrm{w}) \in \mathrm{D}_{\mathrm{M}}$.
Condition: Rigidity (discussed later):
for every $\mathrm{c} \in \mathrm{CON}$, and every $\mathrm{w}, \mathrm{v} \in \mathrm{W}_{\mathrm{M}}: \mathrm{F}_{\mathrm{M}}(\mathrm{c}, \mathrm{w})=\mathrm{F}_{\mathrm{M}}(\mathrm{c}, \mathrm{v})$
Names do not vary their extension from world to world (unlike, as we will see definite noun phrases like the president, $\sigma($ PRESIDENT)).
b. for every $\mathrm{n}>0$: $\mathrm{F}_{\mathrm{M}}:$ PRED $^{\mathrm{n}} \times \mathrm{W}_{\mathrm{M}} \rightarrow \operatorname{pow}\left(\mathrm{D}^{\mathrm{n}}\right)$
for every world $w \in W_{M}$ and every predicate $P \in \operatorname{PRED}^{n}: F_{M}(P) \subseteq D^{n}$.

Thus, a predicate like WALK denotes in each world wa set of individuals: the individuals that walk in w.
Obviously, in different world, different individuals walk, so predicates do vary their extension from world to world.
c. $\mathrm{F}_{\mathrm{M}}:\{\neg\} \times \mathrm{W}_{\mathrm{M}} \rightarrow(\{0,1\} \rightarrow\{0,1\})$

$$
\text { for every } \mathrm{w} \in \mathrm{~W}_{\mathrm{M}}: \mathrm{F}_{\mathrm{M}}(\neg, \mathrm{w})=\binom{0 \rightarrow 1}{1 \rightarrow 0}
$$

$\mathrm{F}_{\mathrm{M}}:\{\wedge, \vee, \rightarrow\} \times \mathrm{W}_{\mathrm{M}} \rightarrow\{0,1\} \times\{0,1\} \rightarrow\{0,1\}$
d. for every $w \in W_{M}: F_{M}(\wedge, w)=\left(\begin{array}{cc}\langle 1,1\rangle & \rightarrow 1 \\ <1,0> & \rightarrow 0 \\ <0,1> & \rightarrow 0 \\ <0,0> & \rightarrow 0\end{array}\right)$
e. for every $w \in W_{M}: F_{M}(\vee, w)=\left(\begin{array}{cc}\langle 1,1\rangle & \rightarrow 1 \\ \langle 1,0\rangle & \rightarrow 1 \\ <0,1\rangle & \rightarrow 1 \\ <0,0\rangle & \rightarrow 0\end{array}\right)$
f. for every $w \in W_{M}: F_{M}(\rightarrow, w)=\left(\begin{array}{cc}\langle 1,1\rangle & \rightarrow 1 \\ <1,0\rangle & \rightarrow 0 \\ <0,1\rangle & 1 \\ <0,0\rangle & \rightarrow 1\end{array}\right)$

We draw pictures of the accessibility relation between worlds in the same way as usual for two place relations:

This indicates: $\mathrm{R}=\left\{\left\langle\mathrm{w}_{1}, \mathrm{w}_{2}\right\rangle,\left\langle\mathrm{w}_{1}, \mathrm{w}_{4}\right\rangle,\left\langle\mathrm{w}_{2}, \mathrm{w}_{1}\right\rangle,\left\langle\mathrm{w}_{4}, \mathrm{w}_{4}\right\rangle\right\}$
Thus, the set of worlds accessible from w_{1} is $\left\{\mathrm{w}_{2}, \mathrm{w}_{4}\right\}$
the set of worlds accessible from w_{2} is $\left\{\mathrm{w}_{1}\right\}$
the set of worlds accessible from w_{3} is \emptyset
the set of worlds accessible from w_{4} is $\left\{\mathrm{w}_{4}\right\}$

Assignment functions:

As before an assignment function for L_{6} on M if a function $\mathrm{g}: \operatorname{VAR} \rightarrow \mathrm{D}_{\mathrm{M}}$
Note: assignment functions are not sensitive to possible worlds: variables get assigned a value independent of possible worlds (this is important).

Compositional semantics.

For every L_{6} model $\mathrm{M}=\left\langle\mathrm{W}_{\mathrm{M}}, \mathrm{R}_{\mathrm{M}}, \mathrm{D}_{\mathrm{M}}, \mathrm{F}_{\mathrm{M}}\right\rangle$, every world $\mathrm{w} \in \mathrm{W}_{\mathrm{M}}$, and every assignment g for L_{6} on M ,
we define for every L_{6} expression $\alpha: \llbracket \alpha \rrbracket_{\mathrm{M}, \mathrm{g}}$
$\llbracket \alpha \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{g}}$, the extension of expression α in model M in world w relative to assignment g .

0 . if $\alpha \in$ LEX, then
$\llbracket \alpha \rrbracket_{M, w, g}=\mathrm{F}_{\mathrm{M}}(\alpha, \mathrm{w})$
If $x \in V A R$, then
$\llbracket \mathrm{x} \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{g}}=\mathrm{g}(\mathrm{x})$

1. If $\alpha_{1}, \ldots \alpha_{\mathrm{n}} \in$ TERM and $\mathrm{P} \in$ PRED $^{\mathrm{n}}$, then
$\llbracket \mathrm{P}\left(\alpha_{1}, \ldots, \alpha_{\mathrm{n}}\right) \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{g}}=1 \mathrm{iff}<\llbracket \alpha_{1} \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{g}}, \ldots, \llbracket \alpha_{\mathrm{n}} \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{g}}>\in \llbracket \mathrm{P} \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{g}} ; 0$ otherwise.
If $\alpha_{1}, \alpha_{2} \in$ TERM, then
$\llbracket\left(\alpha_{1}=\alpha_{2}\right) \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{g}}=1$ iff $\llbracket \alpha_{1} \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{g}}=\llbracket \alpha_{2} \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{g}} ; 0$ otherwise.
2. If $\varphi, \psi \in$ FORM then:
$\llbracket \neg \varphi \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{g}}=\llbracket \neg \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{g}}\left(\llbracket \varphi \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{g}}\right)$
$\llbracket(\varphi \wedge \psi) \rrbracket_{M_{, w, g}}=\llbracket \wedge \rrbracket_{M_{, w, g}}\left(\left\langle\llbracket \varphi \rrbracket_{M_{, w, g},}, \llbracket \psi \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{g}}\right\rangle\right)$
$\llbracket(\varphi \vee \psi) \rrbracket_{\mathrm{M}_{\mathrm{w}, \mathrm{g}}}=\llbracket \vee \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{g}}\left(\left\langle\llbracket \varphi \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{g}}, \llbracket \psi \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{g}}\right\rangle\right)$
$\llbracket(\varphi \rightarrow \psi) \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{g}}=\llbracket \rightarrow \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{g}}\left(\left\langle\llbracket \varphi \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{g}}, \llbracket \psi \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{g}}\right\rangle\right)$
3. If $x \in \operatorname{VAR}$ and $\varphi \in$ FORM then:
$\llbracket \forall \mathrm{x} \varphi \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{g}}=1$ iff for every $\mathrm{d} \in \mathrm{D}_{\mathrm{M}}: \llbracket \varphi \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{g}_{\mathrm{d}}}=1 ; 0$ otherwise
$\llbracket \exists \mathrm{x} \varphi \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{g}}=1$ iff for some $\mathrm{d} \in \mathrm{D}_{\mathrm{M}}: \llbracket \varphi \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{g}}=1 ; 0$ otherwise
4. $\llbracket \square \varphi \rrbracket_{M, w, g}=1$ iff for every $\mathbf{v} \in \mathbf{W}_{\mathrm{M}}$ if $\mathbf{R}(\mathbf{w}, \mathbf{v})$ then $\llbracket \varphi \rrbracket_{M, \mathrm{v}, \mathrm{g}}=1$; 0 otherwise
$\llbracket \diamond \varphi \rrbracket_{M, w, g}=1$ iff for some $\mathbf{v} \in \mathbf{W m}_{\mathrm{M}} \mathbf{R (w , v)}$ and $\llbracket \varphi \rrbracket_{M, v, g}=1$;
0 otherwise

Truth in world w.

Let φ be an L_{6} sentence.

$$
\llbracket \varphi \rrbracket_{\mathrm{M}, \mathrm{w}}=1 \text { iff for every } \mathrm{g}: \llbracket \varphi \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{~g}}=1
$$

$\llbracket \varphi \rrbracket_{\mathrm{M}, \mathrm{w}}=0$ iff for every $\mathrm{g}: \llbracket \varphi \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{g}}=0$

Entailment for L6

$$
\begin{aligned}
& \varphi \text { entails } \psi, \varphi \Rightarrow \psi \text { iff for every model M for } L_{6} \text {, for every world } w \in W_{M} \text { : } \\
& \text { if } \llbracket \varphi \rrbracket_{\mathrm{M}, \mathrm{w}}=1 \text { then } \llbracket \psi \rrbracket_{\mathrm{M}, \mathrm{w}}=1
\end{aligned} \quad \begin{aligned}
& \varphi \Leftrightarrow \psi \text { iff } \varphi \Rightarrow \psi \text { and } \psi \Rightarrow \varphi
\end{aligned}
$$

So φ entails ψ iff for every model and world where φ is true, ψ is true.

Truth in a model:

$\llbracket \varphi \rrbracket_{\mathrm{M}}=1$ iff for every world $\mathrm{w} \in \mathrm{W}_{\mathrm{M}}: \llbracket \varphi \rrbracket_{\mathrm{M}, \mathrm{w}}=1$

Equivalent definition of entailment:

The proposition expressed by φ :

$$
\llbracket \varphi \rrbracket_{\mathrm{M}}=\left\{\mathrm{w} \in \mathrm{~W}_{\mathrm{M}}: \llbracket \varphi \rrbracket_{\mathrm{M}, \mathrm{w}}=1\right\}
$$

The set of all worlds where φ is true.
φ entails $\psi, \varphi \Rightarrow \psi$ iff for every model M for $\mathrm{L}_{6}, \llbracket \varphi \rrbracket_{\mathrm{M}} \subseteq \llbracket \psi \rrbracket_{\mathrm{M}}$

Entailment = subset on the set of sets of possible worlds
More connections:

$$
\begin{aligned}
\llbracket(\varphi \wedge \psi) \rrbracket_{\mathrm{M}}= & \llbracket \varphi \rrbracket_{\mathrm{M}} \cap \llbracket \psi \rrbracket_{\mathrm{M}} \\
\llbracket(\varphi \wedge \psi) \rrbracket_{\mathrm{M}} & = \\
& =\left\{\mathrm{w} \in \mathrm{~W}_{\mathrm{M}}: \llbracket(\varphi \wedge \psi) \rrbracket_{\mathrm{M}, \mathrm{w}}=1\right\} \\
& = \\
& \left\{\mathrm{w} \in \mathrm{~W}_{\mathrm{M}}: \llbracket \varphi \rrbracket_{\mathrm{M}, \mathrm{w}}=1 \text { and } \llbracket \psi \rrbracket_{\mathrm{M}, \mathrm{w}}=1\right\} \\
& \left.=\llbracket \varphi \in \mathrm{W}_{\mathrm{M}}: \llbracket \varphi \rrbracket_{\mathrm{M}, \mathrm{w}}=1\right\} \cap\left\{\mathrm{w} \in \mathrm{~W}_{\mathrm{M}}: \llbracket \psi \rrbracket_{\mathrm{M}, \mathrm{w}}=1\right\} \\
& \llbracket \varphi \rrbracket_{\mathrm{M}} \cap \llbracket \psi \rrbracket_{\mathrm{M}}
\end{aligned}
$$

Conjunction = intersection on the set of of sets of possible worlds

$$
\begin{aligned}
\llbracket(\varphi \vee \psi) \rrbracket_{\mathrm{M}}= & \llbracket \varphi \rrbracket_{\mathrm{M}} \cup \llbracket \psi \rrbracket_{\mathrm{M}} \\
\llbracket(\varphi \vee \psi) \rrbracket_{\mathrm{M}} & = \\
& = \\
& \left\{\mathrm{w} \in \mathrm{~W}_{\mathrm{M}}: \llbracket(\varphi \vee \psi) \rrbracket_{\mathrm{M}, \mathrm{w}}=1\right\} \\
& = \\
& \left\{\mathrm{w} \in \mathrm{~W}_{\mathrm{M}}: \llbracket \varphi \rrbracket_{\mathrm{M}, \mathrm{w}}=1 \text { or } \llbracket \psi \rrbracket_{\mathrm{M}, \mathrm{w}}=1\right\} \\
& \left.=\llbracket \varphi \mathrm{W}_{\mathrm{M}}: \llbracket \varphi \rrbracket_{\mathrm{M}, \mathrm{w}}=1\right\} \cup\left\{\mathrm{w} \in \mathrm{~W}_{\mathrm{M}}: \llbracket \psi \rrbracket_{\mathrm{M}, \mathrm{w}}=1\right\}
\end{aligned}
$$

Disjunction = union on the set of of sets of possible worlds

$$
\begin{array}{rlll}
\llbracket \neg \varphi \rrbracket_{\mathrm{M}}=\mathrm{W}_{\mathrm{M}} & -\llbracket \varphi \rrbracket_{\mathrm{M}} & \\
\llbracket \neg \varphi \rrbracket_{\mathrm{M}} & = & & \left\{\mathrm{w} \in \mathrm{~W}_{\mathrm{M}}: \llbracket \neg \varphi \rrbracket_{\mathrm{M}, \mathrm{w}}=1\right\} \\
& = & & \left\{\mathrm{w} \in \mathrm{~W}_{\mathrm{M}}: \llbracket \varphi \rrbracket_{\mathrm{M}, \mathrm{w}}=0\right\} \\
& = & & \mathrm{W}_{\mathrm{M}}-\left\{\mathrm{w} \in \mathrm{~W}_{\mathrm{M}}: \llbracket \varphi \rrbracket_{\mathrm{M}, \mathrm{w}}=1\right\} \\
& = & \mathrm{W}_{\mathrm{M}}-\llbracket \varphi \rrbracket_{\mathrm{M}}
\end{array}
$$

Negation = complementation on the set of sets of possible worlds

The semantics makes the following facts true:

```
\(\square \varphi \Leftrightarrow \neg \diamond \neg \varphi \quad \quad \square \neg \varphi \Leftrightarrow \neg \diamond \varphi\)
\(\neg \square \varphi \Leftrightarrow \diamond \neg \varphi \quad \neg \square \neg \varphi \Leftrightarrow \Delta \varphi\)
\(\diamond(\varphi \vee \psi) \Leftrightarrow \Delta \varphi \vee \diamond \psi\)
    \(\Uparrow\)
    \(\Delta \varphi \wedge \Delta \psi\)
    \(\Uparrow\)
    \(\diamond(\varphi \wedge \psi)\)
    \(\square(\varphi \vee \psi)\)
        \(\Uparrow\)
        \(\square \varphi \vee \square \psi\)
            \(\Uparrow\)
\(\square(\varphi \wedge \psi) \Leftrightarrow \square \varphi \wedge \square \psi\)
```


The dreamer, the fatalist, and the dogmatic.

Let φ be any formula that is not a contradiction or a tautology and assume that φ is true in some world in W_{M} and false in some other world in W_{M}

The dreamer lives in world w_{0} : in w_{0} everything is possible, nothing is necessary. Since every world is accessible from $\mathrm{w}_{0}: \diamond \varphi$ is true in w_{0} and $\square \varphi$ is false in w_{0}.

The fatalist lives in world w_{1} : in w_{1} only what is actual is possible and what is actual (and only that) is necessary.
Since only w_{1} is accessible from $w_{1}: \diamond \varphi$ and $\square \varphi$ are true in $\mathrm{w}_{1} \mathrm{iff} \varphi$ is true in w_{1} Why is the person in w_{1} a fatalist? Because for the fatalist there is no hope.

The dogmatic lives in world w_{2} : in w_{2} nothing is possible and everything is necessary. Since no world is accesible from $\mathrm{w}_{2} \diamond \varphi$ is false in w_{2} and, trivially, $\square \varphi$ is true in w_{2}.
wrt to tautologies and contradictions:
Contradictions are never possible, tautologies are always necessary.
All tautologies are possible in worlds w_{0} and w_{1}, but no tautologogy is possible in world w_{2}.
No contradiction is necessary in world w_{0} and w_{1}, every contradiction is, trivially, necessary in world w_{2}.

We add the definite article:

$$
\text { If } \mathrm{P} \in \mathrm{PRED}^{1} \text {, then } \sigma(\mathrm{P}) \in \mathrm{TERM}
$$

Semantics:

$$
\llbracket \sigma(\mathrm{P}) \rrbracket_{\mathrm{M}, \mathrm{~g}, \mathrm{w}}=\left\{\begin{array}{l}
\mathrm{d} \quad \text { if } \llbracket \mathrm{P} \rrbracket_{\mathrm{M}, \mathrm{~g}, \mathrm{w}}=\{\mathrm{d}\} \\
\text { undefined otherwise }
\end{array}\right.
$$

Rigidity of names versus non rigidity of definite terms

(1) a. If Kennedy had been a republican, Buck would have been made head of the CIA.
b. If the president had been a republican, Buck would have been made head of the CIA.
(1b) is ambiguous in a way that (1a) is not.

Reading of (1a): Change the world minimally so as to make Kennedy a republican. In that world Buck is made head of the CIA.
(1b): Reading 1: the same as the reading of (1a): Kennedy is the president, and we change the world minimally to make him republican, Buck becomes head of the CIA.
(1b): Reading 2: Change the world minimally as to make the USA have a republican president (Nixon). In that world, Buck is made head of the CIA.

Crucial fact: (1a) does not have the following reading:
(1a): Non-existent reading 2: Change the world minimally as to make the name Kennedy denote a republican (say, Nixon). In that world, Buck is made head of the CIA.

Since the name, individual constant, Kennedy denotes the same individual in all possible worlds, you cannot derive the non-existent reading 2 for (1a).
Since the definite the president denotes different individuals in different words, you can derive reading 2 for (1b).
You can also derive reading 1 for (1b) by given the expression the president wide scope over the modal.

VII. EXAMPLES

Example 1.

Let PROUST, JOYCE \in CON .
Let AU stand for 'be author of Ulysses'
Let AF stand for 'be author of Finnegans Wake'
Let AR stand for 'be author of A la recherche du temps perdu'
$\mathrm{AU}, \mathrm{AF}, \mathrm{AR} \in \mathrm{PRED}^{1}$

MODEL $\mathrm{M}=<\mathrm{W}, \mathrm{R}, \mathrm{D}, \mathrm{F}_{\mathrm{M}}>$ where:

$$
\begin{aligned}
\mathrm{W}= & \left\{\mathrm{w}_{0}, \mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3}\right\} \\
\mathrm{R}= & \left\{\left\langle\mathrm{w}_{0}, \mathrm{w}_{0}\right\rangle,\left\langle\mathrm{w}_{0}, \mathrm{w}_{1}\right\rangle,\left\langle\mathrm{w}_{0}, \mathrm{w}_{2}\right\rangle,\left\langle\mathrm{w}_{0}, \mathrm{w}_{3}\right\rangle,\right. \\
& \left.\left\langle\mathrm{w}_{1}, \mathrm{w}_{1}\right\rangle,\left\langle\mathrm{w}_{2}, \mathrm{w}_{2}\right\rangle,\left\langle\mathrm{w}_{3}, \mathrm{w}_{3}\right\rangle\right\} \\
\mathrm{D}= & \{\mathrm{p}, \mathrm{j}\}
\end{aligned}
$$

F_{M} is specified in the following table:

FM $_{\text {M }}$	w_{0}	w_{1}	w_{2}	w_{3}
PROUST	p	p	p	p
JOYCE	j	j	j	j
AR	$\{\mathrm{p}\}$	$\{\mathrm{j}\}$	$\{\mathrm{p}\}$	$\{\mathrm{j}\}$
AU	$\{\mathrm{j}\}$	$\{\mathrm{j}\}$	$\{\mathrm{p}\}$	$\{\mathrm{j}\}$
AF	$\{\mathrm{j}\}$	$\{\mathrm{j}\}$	$\{\mathrm{j}\}$	\emptyset

The accessibility relation is given as follows:

Of course we should add the three novels to the model and add a two place relation A for author of. Then we write: $\sigma(\lambda \mathrm{x} . \mathrm{A}(\mathrm{x}$, Finnegans wake)) for $\sigma(\mathrm{AF})$, the author of Finnegans Wake.
But we assume that understood and just follow the above specifications of AR, AU and AF

The whole model can be schematically given as:

(1) a. Proust is the author of Ulysses.
b. $($ PROUST $=\sigma(\mathrm{AU}))$

Truth conditions:
$\llbracket \mathrm{PROUST}=\sigma(\mathrm{AU}) \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{g}}=1$ iff
$\llbracket \mathrm{PROUST} \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{g}}=\llbracket \sigma(\mathrm{AU}) \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{g}}$ iff
$\mathrm{F}_{\mathrm{M}}(\mathrm{PROUST}, \mathrm{w})=\mathrm{d}$, where $\{\mathrm{d}\}=\llbracket \mathrm{AU} \rrbracket_{\mathrm{M}, \mathrm{g}, \mathrm{w}}$ iff
$\mathrm{F}_{\mathrm{M}}(\mathrm{AU}, \mathrm{w})=\left\{\mathrm{F}_{\mathrm{M}}(\right.$ PROUST, w $\left.)\right\}$ iff
$\mathrm{F}_{\mathrm{M}}(\mathrm{AU}, \mathrm{w})=\{\mathrm{p}\}$
$\left(\right.$ since $\mathrm{F}_{\mathrm{M}}($ PROUST, w$)=\mathrm{p}$ for every $\left.\mathrm{w} \in \mathrm{W}\right)$

We see:

F_{M}	w_{0}	w_{1}	w_{2}	w_{43}
PROUST	p	p	p	p
JOYCE	j	j	j	j
AU	$\{\mathrm{j}\}$	$\{\mathrm{j}\}$	$\{\mathrm{p}\}$	$\{\mathrm{j}\}$
AF	$\{\mathrm{j}\}$	$\{\mathrm{j}\}$	$\{\mathrm{j}\}$	\varnothing
AR	$\{\mathrm{p}\}$	$\{\mathrm{j}\}$	$\{\mathrm{p}\}$	$\{\mathrm{j}\}$

$\mathrm{F}_{\mathrm{M}}(\mathrm{AU}, \mathrm{w})=\{\mathrm{p}\}$

	w_{0}	w_{1}	w_{2}	w_{3}
PROUST $=\sigma(\mathrm{AU})$	0	0	1	0

(2) a. The author of Ulysses is the author of Finnegans Wake.
b. $(\sigma(\mathrm{AU})=\sigma(\mathrm{AF}))$

Truth conditions:
$\llbracket \sigma(\mathrm{AU})=\sigma(\mathrm{AF}) \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{g}}=1$ iff
$\llbracket \sigma(\mathrm{AU}) \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{g}}=\llbracket \sigma(\mathrm{AF}) \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{g}} \mathrm{iff}$
for some $d \in D: \llbracket A U \rrbracket_{M, w, g}=\llbracket A F \rrbracket_{M, w, g}=\{d\}$ iff
$\mathrm{F}_{\mathrm{M}}(\mathrm{AU}, \mathrm{w})=\mathrm{F}_{\mathrm{M}}(\mathrm{AF}, \mathrm{w})$ and $\left|\mathrm{F}_{\mathrm{M}}(\mathrm{AU}, \mathrm{w})\right|=1$

We see:

F $_{\text {M }}$	w_{0}	w_{1}	w_{2}	w_{3}
PROUST	p	p	p	p
JOYCE	j	J	j	j
AU	$\{\mathrm{j}\}$	$\{\mathrm{j}\}$	$\{\mathrm{p}\}$	$\{\mathrm{j}\}$
AF	$\{\mathrm{j}\}$	$\{\mathrm{j}\}$	$\{\mathrm{j}\}$	\varnothing
AR	$\{\mathrm{p}\}$	$\{\mathrm{j}\}$	$\{\mathrm{p}\}$	$\{\mathrm{j}\}$

$\mathrm{F}_{\mathrm{M}}(\mathrm{AU}, \mathrm{w})=\mathrm{F}_{\mathrm{M}}(\mathrm{AF}, \mathrm{w})$ and $\left|\mathrm{F}_{\mathrm{M}}(\mathrm{AU}, \mathrm{w})\right|=1$

	W_{0}	$\mathrm{~W}_{1}$	$\mathrm{~W}_{2}$	$\mathrm{~W}_{3}$
$\sigma(\mathrm{AU})=\sigma(\mathrm{AF})$	1	1	0	0

Note: $\sigma(\mathrm{AU})=\sigma(\mathrm{AF})$ is false in w_{3}, even though $\sigma(\mathrm{AF})$ is not defined there.
This follows from the semantics given for $=$ (i.e. the ' 0 otherwise').
We could change the semantics for formulas, so that it will come out as undefined instead. But for our purposes here it is just as well that it comes out as false.
(3) a. Proust could have been the author of Ulysses.
b. $\diamond($ PROUST $=\sigma(\mathrm{AU}))$

Truth conditions:
$\llbracket \diamond($ PROUST $=\sigma(\mathrm{AU})) \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{g}}=1 \mathrm{iff}$
for some $\mathrm{v} \in \mathrm{W}: \mathrm{R}(\mathrm{w}, \mathrm{v})$ and $\llbracket \mathrm{PROUST}=\sigma(\mathrm{AU}) \rrbracket_{\mathrm{M}, \mathrm{v}, \mathrm{g}}=1$ iff
for some $\mathrm{v} \in \mathrm{W}: \mathrm{R}(\mathrm{w}, \mathrm{v})$ and $\mathrm{F}_{\mathrm{M}}(\mathrm{AU}, \mathrm{v})=\{\mathrm{p}\}$
We see:

F_{m}	w_{0}	w_{1}	w_{2}	w_{3}
PROUST	p	p	p	p
JOYCE	j	j	j	j
AU	$\{\mathrm{j}\}$	$\{\mathrm{j}\}$	$\{\mathrm{p}\}$	$\{\mathrm{j}\}$
AF	$\{\mathrm{j}\}$	$\{\mathrm{j}\}$	$\{\mathrm{j}\}$	\varnothing
AR	$\{\mathrm{p}\}$	$\{\mathrm{j}\}$	$\{\mathrm{p}\}$	$\{\mathrm{j}\}$

for some $\mathrm{v} \in \mathrm{W}: \mathrm{R}(\mathrm{w}, \mathrm{v})$ and $\mathrm{F}_{\mathrm{M}}(\mathrm{AU}, \mathrm{v})=\{\mathrm{p}\}$

	w_{0}	w_{1}	w_{2}	w_{3}
$\diamond($ PROUST $=\sigma(\mathrm{AU}))$	1	0	1	0

true in w_{0} because w_{2} is accessibe, and there Proust wrote U true in w_{2} for the same reason.
false in the others.
(4) a. Proust could have been the author of Finnegans Wake.
b. $\diamond(\mathrm{PROUST}=\sigma(\mathrm{AF}))$

Truth conditions:
$\llbracket \diamond(\mathrm{PROUST}=\sigma(\mathrm{AF})) \rrbracket \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{g}}=1 \mathrm{iff}$
for some $\mathrm{v} \in \mathrm{W}: \mathrm{R}(\mathrm{w}, \mathrm{v})$ and $\llbracket \mathrm{PROUST}=\sigma(\mathrm{AF}) \rrbracket_{\mathrm{M}, \mathrm{v}, \mathrm{g}}=1 \mathrm{iff}$
for some $\mathrm{v} \in \mathrm{W}: \mathrm{R}(\mathrm{w}, \mathrm{v})$ and $\mathrm{F}_{\mathrm{M}}(\mathrm{AF}, \mathrm{v})=\{\mathrm{p}\}$

We see:

F_{M}	w_{0}	w_{1}	w_{2}	w_{43}
PROUST	p	p	p	p
JOYCE	j	j	j	j
AU	$\{\mathrm{j}\}$	$\{\mathrm{j}\}$	$\{\mathrm{p}\}$	$\{\mathrm{j}\}$
AF	$\{\mathrm{j}\}$	$\{\mathrm{j}\}$	$\{\mathrm{j}\}$	\varnothing
AR	$\{\mathrm{p}\}$	$\{\mathrm{j}\}$	$\{\mathrm{p}\}$	$\{\mathrm{j}\}$

for some $\mathrm{v} \in \mathrm{W}: \mathrm{R}(\mathrm{w}, \mathrm{v})$ and $\mathrm{F}_{\mathrm{M}}(\mathrm{AF}, \mathrm{v})=\{\mathrm{p}\}$

	w_{0}	w_{1}	w_{2}	w_{3}
$\diamond(\mathrm{PROUST}=\sigma(\mathrm{AF}))$	0	0	0	0

Proust did not write F in any world.

This shows that substitution of expre ssions with the same extension is not valid in modal contexts:
(3) b. $\diamond($ PROUST $=\sigma(\mathrm{AU}))$
(2) b. $(\sigma(\mathrm{AU})=\sigma(\mathrm{AF}))$
do not entail
(4) b. $\diamond(\mathrm{PROUST}=\sigma(\mathrm{AF}))$

This entailment would hold if for every model M and every world $\mathrm{w} \in \mathrm{W}_{\mathrm{M}}$ where (3b) and (2) are true, (4b) is true as well.

But model M is a counterexample.
We find a world $w_{0} \in W$ where (3b) and (2b) are true, but (4b) is false (check the tables). Hence (3b) and (2b) do not entail (4b).
(5) a. Proust couldn't have been the author of Finnegans Wake.
b. $\neg \diamond($ PROUST $=\sigma(\mathrm{AF}))$
$\neg($ PROUST $=\sigma(\mathrm{AF})) \Leftrightarrow \square \neg($ PROUST $=\sigma(\mathrm{AF}))$
Truth conditions:
$\llbracket \square \neg($ PROUST $=\sigma(\mathrm{AF})) \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{g}}=1$ iff
for every $\mathrm{v} \in \mathrm{W}$: if $\mathrm{R}(\mathrm{w}, \mathrm{v})$ then $\llbracket \neg(\mathrm{PROUST}=\sigma(\mathrm{AF})) \rrbracket_{\mathrm{M}, \mathrm{v}, \mathrm{g}}=1$ iff
for every $\mathrm{v} \in \mathrm{W}$: if $\mathrm{R}(\mathrm{w}, \mathrm{v})$ then $\llbracket \mathrm{PROUST}=\sigma(\mathrm{AF}) \rrbracket_{\mathrm{M}, \mathrm{v}, \mathrm{g}}=0$
Obviously:

F_{M}	w_{0}	w_{1}	w_{2}	w_{43}
PROUST	p	p	p	p
JOYCE	j	j	j	j
AU	$\{\mathrm{j}\}$	$\{\mathrm{j}\}$	$\{\mathrm{p}\}$	$\{\mathrm{j}\}$
AF	$\{\mathrm{j}\}$	$\{\mathrm{j}\}$	$\{\mathrm{j}\}$	\varnothing
AR	$\{\mathrm{p}\}$	$\{\mathrm{j}\}$	$\{\mathrm{p}\}$	$\{\mathrm{j}\}$

for every $\mathrm{v} \in \mathrm{W}$: if $\mathrm{R}(\mathrm{w}, \mathrm{v})$ then $\llbracket \mathrm{PROUST}=\sigma(\mathrm{AF}) \rrbracket_{\mathrm{M}, \mathrm{v}, \mathrm{g}}=0$

	W_{0}	$\mathrm{~W}_{1}$	$\mathrm{~W}_{2}$	$\mathrm{~W}_{3}$
$\square \neg($ PROUST $=\sigma(\mathrm{AF}))$	1	1	1	1

(5b) is true in every world in W. Hence (5b) is true on model M.
(6) a. Joyce is necessarily the author of Finnegans Wake.
b. $\square(\mathrm{JOYCE}=\sigma(\mathrm{AF}))$

Truth conditions:
$\llbracket \square(\mathrm{JOYCE}=\sigma(\mathrm{AF})) \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{g}}=1 \mathrm{iff}$
for every $\mathrm{v} \in \mathrm{W}$: if $\mathrm{R}(\mathrm{w}, \mathrm{v})$ then $\llbracket \mathrm{JOYCE}=\sigma(\mathrm{AF}) \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{g}}=1$ iff
for every $\mathrm{v} \in \mathrm{W}$: if $\mathrm{R}(\mathrm{w}, \mathrm{v})$ then $\mathrm{F}_{\mathrm{M}}(\mathrm{FW}, \mathrm{v})=\{\mathrm{j}\}$
We see:

F_{M}	w_{0}	w_{1}	w_{2}	w_{3}
PROUST	p	p	p	p
JOYCE	j	J	j	J
AU	$\{\mathrm{j}\}$	$\{\mathrm{j}\}$	$\{\mathrm{p}\}$	$\{\mathrm{j}\}$
AF	$\{\mathrm{j}\}$	$\{\mathrm{j}\}$	$\{\mathrm{j}\}$	\varnothing
AR	$\{\mathrm{p}\}$	$\{\mathrm{j}\}$	$\{\mathrm{p}\}$	$\{\mathrm{j}\}$

	w_{0}	w_{1}	w_{2}	w_{3}
$\square(\mathrm{JOYCE}=\sigma(\mathrm{AF}))$	0	1	1	0

We see that it is not true on M that Joyce necessarily wrote Finnegans Wake, though it is true on M that nobody else could have written Finnegans Wake.
(6) c. Somebody else could have written Finnegans wake instead of Joyce.

$$
\exists \mathrm{x}[\neg(\mathrm{x}=\mathrm{JOYCE} \wedge \diamond(\mathrm{x}=\sigma(\mathrm{AF})]
$$

d. Somebody else could have written Ulysses instead of Joyce.

$$
\exists \mathrm{x}[\neg(\mathrm{x}=\mathrm{JOYCE} \wedge \diamond(\mathrm{x}=\sigma(\mathrm{AU})]
$$

Example 2.

Let FRED $\in \mathrm{CON}, \mathrm{SWEDE} \in \mathrm{PRED}^{1}$, MARRY $\in \mathrm{PRED}^{2}$.
Model $\mathrm{M}=<\mathrm{W}, \mathrm{R}, \mathrm{D}, \mathrm{F}_{\mathrm{M}}>$, where:
$\mathrm{W}=\left\{\mathrm{w}_{0}, \mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$
$\mathrm{R}=\left\{\left\langle\mathrm{w}_{0}, \mathrm{w}_{0}\right\rangle,\left\langle\mathrm{w}_{0}, \mathrm{w}_{1}\right\rangle,\left\langle\mathrm{w}_{2}, \mathrm{w}_{2}\right\rangle,\left\langle\mathrm{w}_{2}, \mathrm{v}_{1}\right\rangle, \ldots,\left\langle\mathrm{w}_{2}, \mathrm{v}_{\mathrm{n}}\right\rangle\right\}$
$D=X \cup Y \cup\{f, s, h\}$, where $X=\left\{\mathrm{sw}_{1}, \ldots, \mathrm{sw}_{\mathrm{m}}\right\}$ and $\mathrm{Y}=\left\{\mathrm{d}_{1}, \ldots, \mathrm{~d}_{\mathrm{n}}\right\}$
for every $w \in W: F_{M}($ FRED, $w)=f$
The interpretations of the predicates SWEDE and MARRY are specified in the following table:

F_{M}	w_{0}	w_{1}	w_{2}	$\mathrm{v}_{\mathrm{i}}($ for every $\mathrm{i} \leq \mathrm{n})$
SWEDE	$\mathrm{X} \cup\{\mathrm{h}\}$	X	$\mathrm{X} \cup\{\mathrm{h}\}$	Y
MARRY	$\{<\mathrm{f}, \mathrm{s}\rangle\}$	$\{\langle\mathrm{f}, \mathrm{h}>\}$	$\{\langle\mathrm{f}, \mathrm{s}\rangle\}$	$\left\{\left\langle\mathrm{f}, \mathrm{d}_{\mathrm{i}}\right\rangle\right\}$

In a picture:

(7) Fred could have been married to a Swede.
a. $\exists \mathrm{x}[\operatorname{SWEDE}(\mathrm{x}) \wedge \diamond$ MARRY (FRED, x$)]$
b. $\triangle \exists \mathrm{x}[\operatorname{SWEDE}(\mathrm{x}) \wedge \operatorname{MARRY}($ FRED, x$)]$

Let me tell you about Helga. I told you we were contemplating marriage.
What I didn't tell you (but what the model tells you), is that she wouldn't have married me without changing her nationality first. She felt very strong about that. Or my mother did. I don't remember. (Just try to become Dutch and keep your nationality...)

Truth conditions:
$\llbracket \exists \mathrm{x}[\operatorname{SWEDE}(\mathrm{x}) \wedge \diamond \mathrm{MARRY}(\operatorname{FRED}, \mathrm{x})] \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{g}}=1$ iff
for some $\mathrm{d} \in \mathrm{F}_{\mathrm{M}}(\mathrm{SWEDE}, \mathrm{w})$ and for some $\mathrm{v} \in \mathrm{W}:\left(\mathrm{R}(\mathrm{w}, \mathrm{v})\right.$ and $\llbracket \mathrm{MARRY}(\mathrm{FRED}, \mathrm{x}) \rrbracket_{\mathrm{M}, \mathrm{v}, \mathrm{g}_{\mathrm{d}}^{\mathrm{d}}}=1$ iff
for some $d \in F_{M}(S W E D E, w)$ for some $v \in W: R(w, v)$ and $\langle f, d>\in F(M A R R Y, v)$
-since $\mathrm{h} \in \mathrm{F}_{\mathrm{M}}\left(\mathrm{SWEDE}, \mathrm{w}_{0}\right), \mathrm{R}\left(\mathrm{w}_{0}, \mathrm{w}_{1}\right)$ and $\langle\mathrm{f}, \mathrm{h}\rangle \in \mathrm{F}\left(\mathrm{MARRY}, \mathrm{w}_{1}\right)$, (7a) is true in w_{0}
-since $\mathrm{F}_{\mathrm{M}}\left(\mathrm{SWEDE}, \mathrm{w}_{2}\right) \cap \mathrm{F}_{\mathrm{M}}\left(\mathrm{SWEDE}, \mathrm{v}_{\mathrm{i}}\right)=\emptyset$,
for every $i \leq n$, there isn't a $d \in F_{M}\left(S W E D E, w_{2}\right)$ and a $v \in W$
such that $R\left(\mathrm{w}_{2}, \mathrm{v}\right)$ and $\langle\mathrm{f}, \mathrm{d}\rangle \in \mathrm{F}_{\mathrm{M}}(\mathrm{MARRY}, \mathrm{v})$.
Hence (7a) is false in w_{2}.,
Results:

	w_{0}	w_{2}
$\exists \mathrm{x}[\operatorname{SWEDE}(\mathrm{x}) \wedge \diamond$ MARRY $($ FRED, x$)]$	1	0

$\llbracket \diamond \exists \mathrm{x}[\operatorname{SWEDE}(\mathrm{x}) \wedge \operatorname{MARRY}($ FRED, x$)] \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{g}}=1$
iff for some $\mathrm{v} \in \mathrm{W}: \mathrm{R}(\mathrm{w}, \mathrm{v})$ and for some $\mathrm{d} \in \mathrm{F}($ SWEDE, v$):<\mathrm{f}, \mathrm{d}>\in \mathrm{F}($ MARRY,v)
-since $\left\langle\mathrm{f}, \mathrm{h}>\notin \mathrm{F}_{\mathrm{M}}\left(\mathrm{MARRY}^{2}, \mathrm{w}_{0}\right)\right.$ and $\mathrm{h} \notin \mathrm{F}_{\mathrm{M}}\left(\right.$ SWEDE, $\left.\mathrm{w}_{1}\right)$
there isn't a v such that < $\left.\mathrm{w}_{0}, \mathrm{v}\right\rangle$ and
for some $d: d \in F_{M}(S W E D E, v)$ and $\langle f, d\rangle \in F_{M}(M A R R Y, v)$.
That is,: $R\left(w_{0}, w_{0}\right)$. In w_{0}, Helga is a Swede, but Fred is not married to her there. $\mathrm{R}\left(\mathrm{w}_{0}, \mathrm{w}_{1}\right)$. In w_{1}, Fred is married to Helga, but she isn't a Swede there.
Hence (7b) is false in w_{0}
Any of the worlds v_{i} is a world such that $\left\langle\mathrm{w}_{2}, \mathrm{v}_{\mathrm{i}}\right\rangle$ and for some $\mathrm{d} \in \mathrm{F}\left(\mathrm{SWEDE}, \mathrm{v}_{\mathrm{i}}\right)\langle\mathrm{f}, \mathrm{d}\rangle \in \mathrm{F}\left(\right.$ MARRY, $\left.\mathrm{v}_{\mathrm{i}}\right)$ (namely, $\left.\mathrm{d}_{\mathrm{i}}\right)$. Hence, clearly, (7b) is true in w_{2}.

	w_{0}	w_{2}
$\diamond \exists \mathrm{x}[\operatorname{SWEDE}(\mathrm{x}) \wedge$ MARRY $($ FRED, x$)]$	0	1

This shows that:
$\exists x[\operatorname{SWEDE}(\mathrm{x}) \wedge \diamond$ MARRY(FRED, x$)]$ does not entail
$\diamond \exists \mathrm{x}[\operatorname{SWEDE}(\mathrm{x}) \wedge \mathrm{MARRY}($ FRED, x$)]$
(w_{0} is a counterexample)
$\diamond \exists \mathrm{x}[\operatorname{SWEDE}(\mathrm{x}) \wedge \operatorname{MARRY}($ FRED, x$)]$ does not entail
$\exists \mathrm{x}[\operatorname{SWEDE}(\mathrm{x}) \wedge \diamond$ MARRY(FRED, x$)]$
(w_{2} is a counterexample)
The readings are logically independent.
Note that in w_{2} it is not true that I had to be married to a Swede:
even though there are many worlds accessible frow w_{2} where I am married to a Swede, there is one where I am not, namely w_{2} itself.

I chose the set of Swedes in the v_{i} worlds to be a set different from the Swedes in w_{2} (the actual Swedes in w_{2}).
This was to fit the part of the story that my Swedish fit was not based on an acquaintance with any Swedes
(better would have been to let the set of Swedes in the accessible worlds vary wildly).
Also, I chose a different Swede in each alternative.
This models the unspecificity of the modal facts:
My Swedish fit was strong enough, and I was at the time flippant enough that I could have found myself married to anyone of them.

VIII. QUANTIFICATION OVER POSSIBLE INDIVIDUALS

You may have noticed that the domain of individuals was chosen to be a domain of possible individuals, and that quantification is over possible individuals.
This means that $\exists x[\operatorname{BOY}(x) \wedge \operatorname{SING}(x)]$ is true in world w iff some possible individual is a boy in w and sings in w.
But this doesn't actually tell you that that boy should exist in w.
Let us make the connection with existence explicit.
We add a predicate EXIST \in PRED 1.
We add to the model a function $\mathrm{Em}_{\mathrm{M}}: \mathrm{W}_{\mathrm{M}} \rightarrow$ powD ${ }_{\mathrm{M}}$.
E maps every world $w \in W$ onto $E_{M}(w)$, which we understand as the set of possible individuals existing in w.

We interpret: $\mathrm{F}_{\mathrm{M}}($ EXIST, w$)=\mathrm{E}_{\mathrm{M}}(\mathrm{w})$
We could now change the semantics of the quantifiers so that quantification in a world is always over objects existing in that world:

$$
\begin{aligned}
& \llbracket \forall \mathrm{x} \varphi \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{~g}}=1 \text { iff for every } \mathrm{d} \in \mathrm{E}_{\mathrm{M}}(\mathrm{w}): \llbracket \varphi \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{gx}}=1 \\
& \llbracket \exists \mathrm{x} \varphi \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{~g}}=1 \text { iff for some } \mathrm{d} \in \mathrm{E}_{\mathrm{M}}(\mathrm{w}): \llbracket \varphi \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{~g}_{\mathrm{d}}^{d}}=1
\end{aligned}
$$

But we are not going to do that:
we will continue to assume that quantification is over possible objects.
But then we can formulate our problem:
Problem:
(1) Some boy kissed Mary
(2) Some boy exists.
(3) Mary exists.

The problem is that (1) should entail (2) and (3), but so far it doesn't.
Instead of building existence into the quantification,
I assume that it follows from the lexical meaning of the predicates:
Lexical postulates.
For every world $w \in W: \mathrm{F}_{\mathrm{M}}(\mathrm{BOY}, \mathrm{w}) \subseteq \mathrm{E}_{\mathrm{M}}(\mathrm{w})$
For every world $w \in W: \operatorname{dom}\left(\mathrm{F}_{\mathrm{M}}(\mathrm{KISS}, \mathrm{w}) \subseteq \mathrm{E}_{\mathrm{M}}(\mathrm{w})\right.$

$$
\operatorname{ran}\left(\mathrm{F}_{\mathrm{M}}(\mathrm{KISS}, \mathrm{w}) \subseteq \mathrm{E}_{\mathrm{M}}(\mathrm{w})\right.
$$

With these postulates, $(1) \Rightarrow(2)$ and $(1) \Rightarrow(3)$.
One advantage of putting the existence claim into the lexical meanings of the predicates is that in this way you can distinguish different predicates:

Lexical postulates.
For every world $\mathrm{w} \in \mathrm{W}: \operatorname{dom}\left(\mathrm{F}_{\mathrm{M}}(\right.$ RESEMBLE, w$) \subseteq \mathrm{E}_{\mathrm{M}}(\mathrm{w})$
For every world $w \in W: \operatorname{dom}\left(F_{M}(\right.$ WORSHIP, $w) \subseteq \mathrm{E}_{\mathrm{M}}(\mathrm{w})$
(4) a. Fred resembles Leopold Bloom.
b. Fred worships Anna Livia Plurabella.

Side remark:

Resemble shows temporal asymmetry (Kratzer)
(4') a. \checkmark I look like my ancester who lived under Napoleon.
b. ?My ancester who lived under Napolean looked like me.

End of side remark

I haven't put an existence requirement on the range of the interpretations of resemble and worship, and that means that if I claim that a resembles b or a worships b , it does follow that a exists, but it doesn't follow that b exists.

We see that we need to distinguish different types of predicates, when we're concerned with existence claims. This means that we need these kinds of lexical postulates any way. If so, there is no need to put them as constraints on the quantifiers as well.

But what about (5):
(5) Pegasus is a winged horse.

Is this statement true in world w_{0}, the real world?
Probably not. But there is a sense in which it is true.
Let's sketch a little analysis of fictional discourse. [More sophisticated analysis:
Terrence Parsons - Non-existent objects]
I assume that the sense in which (5) is true is the following.
On the 'true' use, (5) contains an implicit operator: 'in the story':
(6) (In the story), Pegasus is a winged horse.

How should we analyze this operator?
I assume that in the model the story exists in the real world w_{0}, and I assume that we associate with the real world w_{0} a set:
$S_{w_{0}}$ the set of all worlds compatible with the story in wo.
In fact, I will assume that, we can associate with every world w such a set S_{w}.
Now we add to the language an operator S (for 'in the story') with the following syntax and semantics:

$$
\begin{aligned}
& \text { If } \varphi \in \text { FORM, then } S(\varphi) \in \text { FORM } \\
& \llbracket \mathrm{S}(\varphi) \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{~g}}=1 \text { iff for every } \mathrm{v} \in \mathrm{~S}_{\mathrm{w}}: \llbracket \varphi \rrbracket_{\mathrm{M}, \mathrm{v}, \mathrm{~g}}=1
\end{aligned}
$$

Let WH be the predicate winged horse, and assume that WH satisfies the same postulate as BOY:

Lexical postulate.

For every world $w \in W: F_{M}(W H, w) \subseteq \mathrm{E}_{\mathrm{M}}(\mathrm{w})$
In the real world $\mathrm{w}_{0}, \mathrm{~F}_{\mathrm{M}}\left(\mathrm{WH}, \mathrm{w}_{0}\right)=\varnothing$
Consequently:

$$
\llbracket \mathrm{WH}(\mathrm{PEGASUS}) \rrbracket_{\mathrm{M}, \mathrm{w}_{0}, \mathrm{~g}}=0, \text { because } \mathrm{F}_{\mathrm{M}}(\mathrm{PEGASUS}) \notin \mathrm{F}_{\mathrm{M}}\left(\mathrm{WH}, \mathrm{w}_{0}\right)
$$

But:

$$
\begin{aligned}
& \llbracket \mathrm{S}(\mathrm{WH}(\text { PEGASUS })) \rrbracket_{\mathrm{M}, \mathrm{w}_{0}, \mathrm{~g}}=1 \text { iff } \\
& \text { for every } \mathrm{v} \in \mathrm{~S}_{\mathrm{w}_{0}}: \mathrm{F}_{\mathrm{M}}(\mathrm{PEGASUS}, \mathrm{v}) \in \mathrm{F}_{\mathrm{M}}(\mathrm{WH}, \mathrm{v})
\end{aligned}
$$

Since the story distinctly specifies the winged-horsedness of Pegasus, we assume that indeed, only worlds where Pegasus is in the extension of WH are in $S_{w_{0}}$.
Consequently, $\llbracket \mathrm{S}(\mathrm{WH}(\mathrm{PEGASUS})) \rrbracket_{\mathrm{M}, \mathrm{w}_{0}, \mathrm{~g}}=1$.
Note that it is important to realize that, while we talk about 'the world according to the story', there is no such thing: there are only the worlds compatible with the story. This is because the story leaves many things open that a world does not leave open. When the Duke de Guermantes makes a scene about the color of his wife's shoes, the story doesn't tell you, for instance, what size those shoes were:
This means that in some worlds compatible with the story, the Dutchess wore size 36, in others 37, etc.

We can show now that the following entailment relations hold:
(7) a. Pegasus is a winged horse.

WH(PEGASUS)
entails
b. Pegasus exists.

EXIST(PEGASUS)
(8) a. (In the story) Pegasus is a winged horse.

S(WH(PEGASUS))

does not entail

b. Pegasus exists. EXIST(PEGASUS)
(9) a. (In the story) Pegasus is a winged horse. S(WH(PEGASUS))

entails

b.(In the story) Pegasus exists. S(EXIST(PEGASUS))

IX. PROPOSITIONS AND PROPOSITIONAL ATTITUDE VERBS

For the use of the examples below, we add a new syntactic category of propositions, TERM ${ }_{\text {prop }}$ And we add a category of relations between individuals and propositions : $\mathrm{PRED}_{\text {<ind,prop> }}^{2}$:

$$
\begin{aligned}
& \text { PRED }_{\text {<ind,prop> }}^{2}=\{\text { BELIEVE, CLAIM }\} \\
& \text { If } \mathrm{t} \in \mathrm{TERM} \text { and } \mathrm{p} \in \mathrm{TERM}_{\text {prop }} \text { and } \mathrm{R} \in:, \mathrm{PRED}_{\text {<ind,prop> }}^{2} \text { then } \mathrm{R}(\mathrm{t}, \mathrm{p}) \in \text { FORM } \\
& \llbracket \mathrm{R}(\mathrm{t}, \mathrm{p}) \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{~g}}=1 \text { iff }\left\langle\llbracket \mathrm{t} \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{~g}}, \llbracket \mathrm{p} \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{~g}>} \in \mathrm{F}_{\mathrm{M}}(\mathrm{R})\right.
\end{aligned}
$$

We form propositions from formulas by a proposition forming operation ^("up")

$$
\begin{aligned}
& \text { If } \varphi \in \text { FORM, then } \wedge^{\wedge} \varphi \in \text { TERM }_{\text {prop }} \\
& \qquad \mathbb{L}_{\wedge} \varphi \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{~g}}=\left\{\mathrm{v} \in \mathrm{~W}: \llbracket \varphi \rrbracket_{\mathrm{M}, \mathrm{v}, \mathrm{~g}}=1\right\}
\end{aligned}
$$

Thus, in world $w, ~ \wedge S M A R T(S A S H A) ~ d e n o t e s ~$ $\left\{v \in \mathrm{~W}: \mathrm{F}_{\mathrm{m}}(\mathrm{SASHA}, \mathrm{v}) \in \mathrm{F}_{\mathrm{M}}(\mathrm{SMART}, \mathrm{v})\right\}$ the set of worlds v such that Sasha is smart in v . Interpreting that as the operator ${ }^{\wedge}$, we can have expressions like:
(1) a. Fred believes that sasha is smart
b. BELIEVE(FRED, ^SMART(SASHA))
(1b) is true in M in world w iff

$$
\left\langle\mathrm{F}_{\mathrm{M}}(\mathrm{FRED}, \mathrm{w}),\left\{\mathrm{v} \in \mathrm{~W}: \mathrm{F}_{\mathrm{M}}(\mathrm{SASHA}, \mathrm{v}) \in \mathrm{F}_{\mathrm{M}}(\mathrm{SMART}, \mathrm{v})\right\}>\in \mathrm{F}_{\mathrm{M}}(\text { BELIEVE,w })\right.
$$

The pair consisting of Fred and the set of worlds where Sasha is smart stand in the believe relation, i.e. Fred stands in the believe relation to the set of worlds where Sasha is smart.
$\wedge(\ldots)$ creates an intensional context.
We can go on and constrain the meaning of F_{M} (BELIEVE,w) further.
For instance, we can assume in the model for each individual $\mathrm{d} \in \mathrm{D}$ and world w a set $B_{d, w}$, the set of worlds compatible with what d believes in w. And we can impose a meaning constraint on $\mathrm{F}_{\mathrm{M}}($ BELIEVE,w) that:

$$
\langle\mathrm{d}, \mathrm{p}\rangle \in \mathrm{F}_{\mathrm{M}}\left(\text { BELIEVE,w) iff } \mathrm{B}_{\mathrm{d}, \mathrm{w}} \subseteq \mathrm{p}\right.
$$

This gives a possible world semantics for believe (Hintikka 1962). With this semantic constraint: (1b) is true in world w if in every world v compatible with what Fred believes in in w, Sasha is smart.
See Stalnaker's book Inquiry for extensive discussion of this analysis.

X. MODALS AS GENERALIZED QUANTIFIERS

We add a term $\mathrm{MB} \in \mathrm{CON}_{\text {prop }}$
$\mathrm{F}_{\mathrm{M}}(\mathrm{MB}, \mathrm{w})=\{\mathrm{v} \in \mathrm{W}: \mathrm{R}(\mathrm{w}, \mathrm{v})\}$
MB stands for the modal base in w , the set of worlds accessible from w .
We now add generalized quanfiers relating sets of possible worlds:
EVERY $_{\text {prop }}$, SOME $_{\text {prop }} \in$ DET $_{\text {prop }}$
If $\alpha \in \mathrm{DET}_{\text {prop }}$ then $\mathrm{F}_{\mathrm{M}}(\alpha) \subseteq \operatorname{pow}(\mathrm{W}) \times \operatorname{pow}(\mathrm{W})$ a relation between propositions, sets of possible worlds.

If $\alpha \in$ DET $_{\text {prop }}$ and $\mathrm{p}, \mathrm{q} \in$ TERM $_{\text {prop }}$ then $\alpha[\mathrm{p}, \mathrm{q}] \in$ FORM
$\llbracket \alpha\left[p, q \rrbracket \rrbracket_{M, w, g}=1\right.$ iff $<\llbracket p \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{g}}, \llbracket \mathrm{q} \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{g}}>\in \llbracket \alpha \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{g}}$
$\mathrm{F}_{\mathrm{M}}\left(\right.$ EVERY $\left._{\text {prop }}\right)=\{\langle\mathrm{p}, \mathrm{q}\rangle: \mathrm{p}, \mathrm{q} \subseteq \mathrm{W}$ and $\mathrm{p} \subseteq \mathrm{q}\}$
$\mathrm{F}_{\mathrm{M}}\left(\mathrm{SOME}_{\mathrm{prop}}\right)=\{\langle\mathrm{p}, \mathrm{q}\rangle: \mathrm{p}, \mathrm{q} \subseteq \mathrm{W}$ and $\mathrm{p} \cap \mathrm{q} \neq \emptyset\}$
Fact: $\quad \square \varphi=$ EVERY $_{\text {prop }}\left[\mathrm{MB},{ }^{\wedge} \varphi\right]$
$\diamond \varphi=\operatorname{SOME}_{\text {prop }}\left[\mathrm{MB},{ }^{\wedge} \varphi\right]$
i.e.
[EVERY $\left.{ }_{\text {prop }}\left[\mathrm{MB},{ }^{\wedge} \varphi\right]\right]_{\mathrm{M}, \mathrm{w}, \mathrm{g}}=1 \mathrm{iff}$
$\llbracket \mathrm{MB} \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{g}} \subseteq \llbracket{ }^{\wedge} \varphi \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{g}}$ iff
$\{\mathrm{v} \in \mathrm{W}: \mathrm{R}(\mathrm{w}, \mathrm{v})\} \subseteq\left\{\mathrm{v} \in \mathrm{W}: \llbracket \varphi \rrbracket_{\mathrm{M}, \mathrm{v}, \mathrm{g}}=1\right\}$ iff
for every $\mathrm{v} \in \mathrm{W}$: if $\mathrm{R}(\mathrm{w}, \mathrm{v})$ then $\llbracket \varphi \rrbracket_{\mathrm{M}, \mathrm{v}, \mathrm{g}}=1$ iff
$\llbracket \square \varphi \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{v}}=1$
The generalized quantifier perspective is useful to represent other modals than \square and \diamond, for instance, probably.

We have dealt in the nominal domain with cardinality most:
$\mathrm{F}_{\mathrm{M}}\left(\operatorname{MOST}_{| |}\right)=\left\{\langle\mathrm{X}, \mathrm{Y}\rangle: \mathrm{X}, \mathrm{Y} \subseteq \mathrm{D}_{\mathrm{M}}\right.$ and $\left.|\mathrm{X} \cap \mathrm{Y}|>\mid \mathrm{X}-\mathrm{Y}\right\}$

Most cats are smart:

$\operatorname{MOST}_{\|}[\mathrm{CAT}, \mathrm{SMART}] \quad|\mathrm{CAT} \cap \mathrm{SMART}|>|\mathrm{CAT}-\mathrm{SMART}|$
More cats are smart than not smart
If we extend the theory with mass nouns, we will need to deal with most that doesn't compare in terms of cardinality but in terms of other measures, like volume or weight:

Let \mathbb{R}^{+}be the set of non-negative real numbers.
$\mathrm{P}, \mathrm{Q} \subseteq \mathrm{D}_{\mathrm{M}}$
An additive measure is a function $\mu: \operatorname{pow}\left(\mathrm{D}_{\mathrm{M}}\right) \rightarrow \mathbb{R}^{+}$ such that: $\mu(0)=0$ and $\mu(P \cup \mathrm{Q})=\mu(\mathrm{P}-\mathrm{Q})+\mu(\mathrm{Q}-\mathrm{P})+\mu(\mathrm{P} \cap \mathrm{Q})$

So the weight of the union of the books that A and B own is the weight of the books that A owns alone plus the weight of the books that B owns alone, plus the weight of the books that A and B jointly own.

Let μ be an additive measure:
$\mathrm{F}_{\mathrm{M}}\left(\operatorname{MOST}_{\mu}\right)=\left\{\langle\mathrm{X}, \mathrm{Y}\rangle: \mathrm{X}, \mathrm{Y} \subseteq \mathrm{D}_{\mathrm{M}}\right.$ and $\left.\left.\mu(\mathrm{X} \cap \mathrm{Y})\right\rangle \mu(\mathrm{X}-\mathrm{Y})\right\}$
Most Marc de Bourgogne is drunk in France
$\operatorname{MOST}_{\mu}[$ MARC, DIF]
$\mu($ MARC \cap DIF $)>\mu($ MARC - DIF $)$
More Marc is drunk in France than is drunk abroad

Standard probability theory defined a probability measure on pow(W), the set of all sets of possible worlds:

Let W be the set of worlds, $\mathrm{w} \in \mathrm{W}$ and $\mathrm{P}, \mathrm{Q} \subseteq \mathrm{W}$, and let $[0,1]_{\mathbb{R}}$ be the set of real numbers between 0 and 1 .

A probability measure is an additive measure $\pi^{\mathrm{w}}: \operatorname{pow}(\mathrm{W}) \rightarrow[0,1] \mathbb{R}$ such that $\pi^{\mathrm{w}}(\mathrm{W})=1$
Additivity says that the probability that P or Q holds is the probability that P holds but not Q plus the probability that Q holds but not Q plus the probability that P and Q both hold.

It follows, for instance, from this that $\pi^{\mathrm{w}}\left({ }^{\wedge} \neg \varphi\right)=1-\pi^{\mathrm{w}}(\varphi)$ (or in other words: the more probable $\neg \varphi$ is the less probable φ is)

We index the probability measure here with w to let w function as a background context.

With this, we can now propose:
Let π^{w} be a probability measure.
$\operatorname{MOST}_{\pi, \mathrm{w}} \in$ DETprop
$\mathrm{F}_{\mathrm{M}}\left(\mathrm{MOST}_{\pi, \mathrm{w}}\right)=\left\{\langle\mathrm{p}, \mathrm{q}\rangle: \mathrm{p}, \mathrm{q} \subseteq \mathrm{W}\right.$ and $\left.\pi^{\mathrm{w}}(\mathrm{P} \cap \mathrm{Q})>\pi^{\mathrm{w}}(\mathrm{P}-\mathrm{Q})\right\}$
and we represent probably as:
$\llbracket \operatorname{probably} \varphi \rrbracket_{\mathrm{Mw}, \mathrm{g}}=1$ iff $\llbracket \operatorname{MOST}_{\pi, \mathrm{w}}\left[\mathrm{MB},{ }^{\wedge} \varphi\right] \rrbracket_{\mathrm{Mw}, \mathrm{g}}=1$ iff $\pi^{\mathrm{w}}(\mathrm{MB} \cap \wedge \varphi)>\pi^{\mathrm{w}}\left(\mathrm{MB} \cap^{\wedge} \neg \varphi\right)$
φ is probably in wiff the set of accessible worlds where φ is true is more probable in w than the set of accessible worlds where φ is false.

Accessible worlds where φ is true here may be in context w be thought of as futures of the present in w where φ gets realized within a given time framl; and accessible worlds where φ is false would then be in context w futures of the present in w where φ doesn't get realized within a given time frame.

On that interpretation φ is probable means that the claim that φ is gonna happen in the given period is more likely than that φ is not gonna happen in that period. That seems a reasonable interpretation.

XI. INDIVIDUAL CONCEPTS

Individual concepts are functions from possible worlds to individuals.
Possible world is short for index, parameter of variation of extensions. So often when we say world, we mean world-time, and more specifically world-times where the world parameter is kept constant, i.e. times.
In several of the examples below, the individual concepts we use are functions from moments of time to individuals (including degrees on a scale in the first example).

1. THE TEMPERATURE PARADOX (Partee)

The need for individual concepts is motivated by an analysis of Partee's temperature puzzle:
(1) The temperature is $90 . \quad[90 \mathrm{~F}=32.222 \mathrm{C}]$
(2) The temperature is rising
hence: (3) Ninity is rising
This pattern is intuitively invalid, but its representation in predicate logic is valid:
Let TEMP, RISE \in PRED $^{1}, 90 \in \mathrm{CON}$
(4) $\sigma($ TEMP $)=90$
(5) RISE(σ (TEMP))

Hence: (6) RISE(90)
This is valid by extensionality.
The same problem can be formulated with normal individuals as well:
(7) The trainer is Michels.
(8) The trainer changes.

Hence: (9) Michels changes.
Let TRAINER, CHANGE \in PRED 1, MICHELS \in CON
(10) $\sigma($ TRAINER $)=$ MICHELS
(11) CHANGE($\sigma($ TRAINER))

Hence: (12) CHANGE(MICHELS)
There is a reading of the pattern in (7)-(9) which is valid, but there is another reading, the more prominent one, which is not valid. It is the latter we are concerned with. We find the same ambiguity in (13): (said, say, in 1961).
(13) The president is a democrat, but he could have been a republican.
(14) a. Kennedy could have been a republican
b. There could have been a republican president.

It is the (14b) reading that we are interested in.

2. ADDING INDIVIDUAL CONCEPTS

We analyze the puzzles with individual concepts.
Individual concepts are functions from world to individuals.
In this section we will add individual concepts as a special kind of individual to the predicate logical modal semantics that we have. That is, we are going to treat individual concepts in the same way as we have treated individuals. That is, we are going to have names for individual concepts, variables over individual concepts, predicates of individual concepts, quantifiers over individual concepts, and abstraction over individual concepts, and all these clauses are in analogy to the clauses for individuals we have given before.

This is done systematically in the intensional type logic that Montague developed in the sixties and that I teach in Advanced Semantics. Here I will only introduce what I need for the dealing with the examples to come.

Enriching the logical language with individual concepts.

1. We start with the language of predicate logic enriched with the definite article and generalized quantifiers, i.e. the language we ended up with in the first part.
We call the relevant basic sets: $\mathrm{CON}_{\text {ind }}, \mathrm{VAR}_{\text {ind }}$, TERM $_{\text {ind }}, \operatorname{PRED}_{\text {ind }}^{\mathrm{n}}$,
2. We add the modal operators \square and \diamond.

We give the by now standard modal interpretation for this language in terms of models M that contain $\left\langle\mathrm{D}_{\mathrm{M}}, \mathrm{W}, \mathrm{R}_{\mathrm{W}}, \mathrm{F}_{\mathrm{M}}>\right.$.

We will use in what follows domains based on these sets and extend the interpretation functions and assignment functions where necessary.
3. We add propositions, relations between individuals and propositions and the proposition forming operation \wedge, I repeat this from the previous section:

We add set of terms TERM $_{\text {prop }}$, and the clause and interpretation:

If $\varphi \in \operatorname{FORM}$ then ${ }^{\wedge} \varphi \in$ TERM $_{\text {prop }}$
$\llbracket \wedge \varphi \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{g}}=\left\{\mathrm{v} \in \mathrm{W}: \llbracket \varphi \rrbracket_{\mathrm{M}, \mathrm{v}, \mathrm{g}}=1\right\}$
The proposition expressed by φ is the set of all worlds where φ is true.
We add a new set of relations to the language: $\mathrm{PRED}_{\text {<ind,prop> }}^{2}$ and the rules:
If $\mathrm{P} \in \mathrm{PRED}_{<\text {ind,prop> }}^{2}$ then $\mathrm{F}_{\mathrm{M}}(\mathrm{P}) \subseteq\left(\mathrm{D}_{\mathrm{M}} \times\right.$ pow $\left.(\mathrm{W})\right)$
A relation between individuals and propositions, like BELIEVE, CLAIM
If $\mathrm{P} \in \mathrm{PRED}_{\text {<ind, prop> }}^{2}$ and $\mathrm{t} \in \mathrm{TERM}_{\text {ind }}$ and $\mathrm{p} \in \mathrm{TERM}_{\text {prop }}$ then $\mathrm{P}(\mathrm{t}, \mathrm{p}) \in \operatorname{FORM}$ $\llbracket \mathrm{P}(\mathrm{t}, \mathrm{p}) \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{g}}=1 \mathrm{iff}<\llbracket \mathrm{t} \rrbracket_{\mathrm{M}, \mathrm{g},} \llbracket \mathrm{p} \rrbracket_{\mathrm{M}, \mathrm{g}}>\in \llbracket \mathrm{P} \rrbracket_{\mathrm{M}, \mathrm{g}}$
4. We now add individual concepts to the theory.

For clarity I will write individual concept terms, predicates of individual concepts, and relations between sets of individual concepts in the colour green.
4_{a} We add a set of individual concept constants, variables and terms:
$\mathrm{CON}_{\mathrm{ic}}=\left\{\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}\right\} \quad$ The set of individual concept constants (names of individual concepts)
$\operatorname{VAR}_{\mathrm{ic}}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right\} \quad$ The set of individual concept variables
$\mathrm{TERM}_{\mathrm{ic}}=\mathrm{CON}_{\mathrm{ic}} \cup \mathrm{VAR}_{\mathrm{ic}}$
These expressions are interpreted in the domain of individual concepts:
$\left(\mathrm{W} \rightarrow \mathrm{D}_{\mathrm{M}}\right)$, the set of all functions from worlds to individuals, is the domain of individual concepts.

So:

$$
\begin{aligned}
& \text { For } \mathrm{c} \in \mathrm{CON}_{\mathrm{ic}}: \mathrm{F}_{\mathrm{M}}(\mathrm{c}) \in\left(\mathrm{W} \rightarrow \mathrm{D}_{\mathrm{M}}\right) \\
& \text { For } \mathrm{x} \in \operatorname{VAR}_{\mathrm{ic}}: \quad \mathrm{g}(\mathrm{x}) \in\left(\mathrm{W} \rightarrow \mathrm{D}_{\mathrm{M}}\right)
\end{aligned}
$$

This means that we let assignment functions g be functions from $V A R_{\text {ind }}$ into D_{M} and from $\operatorname{VAR}_{\mathrm{ic}}$ into $\left(\mathrm{W} \rightarrow \mathrm{D}_{\mathrm{M}}\right)$.

As I said, I will not try to be systematic here but only add enought to the model so that I can deal with the examples below: we do need predicates of individual concepts:

4b. PRED $_{\mathrm{ic}}^{1}$ is the set of one place predicates of individual concepts.
If $\mathrm{P} \in \mathrm{PRED}_{\mathrm{ic}}^{1}$ then $\mathrm{F}_{\mathrm{M}}(\mathrm{P}) \subseteq\left(\mathrm{W} \rightarrow \mathrm{D}_{\mathrm{M}}\right)$
Predicates of individual concepts like CHANGE denote sets of individual concepts.

$$
\begin{aligned}
& \text { It } t \in T E R M_{i c} \text { and } P \in P R E D_{i c}^{1} \text { then } P(t) \in \text { FORM } \\
& \llbracket P(t) \rrbracket_{M, g}=1 \text { iff } \llbracket t \rrbracket_{M, g} \in \llbracket P \rrbracket_{M, g}
\end{aligned}
$$

4c. We will not introduce Frege-Tarski quantification over individual concepts, but generalization quantifiers for them.
Just as individual determiners denote relations between sets of individuals, individual concept determiners denote relations between sets of individual concepts.

```
DET ic = {EVERY,SOME,...}
If \alpha\in DET ic then:
FM(\alpha)={<\mathbf{X, Y}>:\mathbf{X}\subseteq(W->\mp@subsup{\textrm{D}}{\textrm{M}}{})\mathrm{ and }\mathbf{Y}\subseteq(\textrm{W}->\mp@subsup{\textrm{D}}{\textrm{M}}{})\mathrm{ and }\mp@subsup{\textrm{r}}{\alpha}{}(|\mathbf{X}\cap\mathbf{Y}|,|\mathbf{X}-\mathbf{Y}|
```

Note that, since \mathbf{r}_{α} is a relation between numbers, we do not have to separately define \mathbf{r}_{α}, we use the same relation \mathbf{r}_{α} as before for \mathbf{r}_{α}.

```
If P, Q \in PRED i
```


4_{d}. We add abstraction over individual concepts to the language:

$$
\begin{aligned}
& \text { If } \mathrm{x} \in \mathrm{VAR}_{\mathrm{ic}} \text { and } \varphi \in \mathrm{FORM} \text { then } \lambda \mathrm{x} . \varphi \in \operatorname{PRED}_{\mathrm{ic}}^{1} \\
& \llbracket \lambda \mathrm{x} \cdot \varphi \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{~g}}=\left\{\mathrm{f} \in\left(\mathrm{~W} \rightarrow \mathrm{D}_{\mathrm{M}}\right): \llbracket \varphi \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{~g}}^{\mathrm{f}}=1\right\}
\end{aligned}
$$

Just as abstracting over an individual variable gives a predicate of individuals, a set of individuals,
over an individual concept variable gives a predicate of individual concepts, a set of individual concepts:
$\lambda x . \varphi$ denotes the set of all individual concepts f for which φ is true relative to g_{x}^{f}

5. The operations DOWN $\left({ }^{\vee}\right)$ and UP $\left({ }^{\wedge}\right)$.

The last thing that we add to the logical language are two operations that relate the categories TERM ${ }_{i n d}$ and TERM ${ }_{i c}$:

$$
\begin{array}{ll}
\text { DOWN: From TERM } \mathrm{ic}_{\mathrm{ic}} \text { to } \text { TERM }_{\mathrm{ind}} & \text { Extension of } \alpha \text { at w } \\
\text { If } \alpha \in \mathrm{TERM}_{\mathrm{i}}, \text { then }{ }^{\vee} \alpha \in \text { TERM }_{\text {ind }} & \\
\quad \llbracket{ }^{\vee} \alpha \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{~g}}=\llbracket \alpha \rrbracket_{\mathrm{M}, \mathrm{w}, \mathrm{~g}}(\mathrm{w}) &
\end{array}
$$

α denotes in world w an individual concept, a function f from worlds into individuals. v_{α} denotes in world w the value of that individual concept f for world $w: f(w)$, the individual that is the value of f for world w.

So if MISTER UNIVERSE denotes at time t_{0} the function f from times to individuals which maps each time t onto the individual who holds at that time t the title Mister Universe, then ${ }^{\vee}$ MISTER UNIVERSE denotes at the present time t_{0} the value of that function for time $\mathrm{t}_{0}, \mathrm{f}\left(\mathrm{t}_{0}\right)$, which is the individual who currently holds the title (i.e. at t_{0}).

```
UP: From TERM ind to TERMic Intension of \alpha
If }\alpha\in\mathrm{ TERM, then ^ }\alpha\in\textrm{i}\mathrm{ -TERM
    \llbracket^\alpha\rrbracket\M,w,g}\mathrm{ is the function in (W }->\mp@subsup{D}{M}{\prime}
    which maps every world v }\in\textrm{W}\mathrm{ onto }\llbracket\alpha\mp@subsup{\rrbracket}{\textrm{M},\textrm{v},\textrm{g}}{}\mathrm{ , the extension of }\alpha\mathrm{ in w.
```

${ }^{\wedge} \alpha$ denotes in world w the individual concept which maps every world v onto the denotation of α in v. (this is the intension of α)

So, if PRESIDENT \in PRED $_{\text {ind }}^{1}$,
$\sigma($ PRESIDENT $)$ denotes in world w the person who is in w the president.
${ }^{\wedge} \sigma($ PRESIDENT) denotes in world w the function that maps every world v onto the person who is in v the president.

We will be more interested in finding the correct readings than in systematically argue about how these readings come about in the grammar.

I will assume that rise, change denote properties of functions, and hence are interpreted as PRED $_{\text {ic }}^{1}$ predicates RISE, CHANGE $\in \operatorname{PRED}_{\text {ic }}^{1}$

3. THE TRAINER PUZZLE

For the sake of the examples here we think of possible worlds as world-times, and the variation in the present section involves the time parameter. We allow ourselves here to be a bit imprecise, and just talk about world-times.

(7) The trainer is Michels.

We give this the same interpretation as before:
(7a) $\sigma($ TRAINER $)=$ MICHELS
the trainer in world w is Michels

(8) The trainer changes.

Here we change the analysis: change is a predicate of functions, expressing that the function is different at later world-times than it is at earlier world-times. This can mean various things.
-For instance, if the function f is constant, i.e. assigns the same individual to all relevant worlds-times, the natural interpretation of $f \in F_{M}(C H A N G E, w)$ is that the individual which is the value of f has very different properties at earlier worldtimes than at later world times (for instance, a different world-view, nationality,...)
-On the other hand, when function f is not a constant function, a very natural interpretation of $f \in \mathrm{~F}_{\mathrm{M}}(\mathrm{CHANGE}, \mathrm{w})$ is than the value of \mathbf{f} at earlier world times is not the same as the value of f at later world-times: the club changed its trainer, as when Rinus Michels resigned in 1973 as trainer of Ajax and was replaced by Stefan Kovács.

It is the latter interpretation that we are interested in here.
Note that we cannot write:
CHANGE($\sigma($ TRAINER $)$) \#
because that is not well-formed: $\sigma($ TRAINER $)$ is not in TERM i_{i}.
We need an expression in TERM $_{\mathrm{ic}}$ as the argument of CHANGE.
Systematic meaning shift: [type shifting - Advanced Semantics]
if $\alpha \in \mathrm{TERM}_{\text {ind }}$ and $\beta \in \operatorname{PRED}_{\mathrm{ic}}^{1}$ then:
You can shift from α to ${ }^{\wedge} \alpha$ to resolve type mismatch.
if $\alpha \in$ TERM $_{\text {ic }}$ and $\beta \in \operatorname{PRED}_{\text {ind }}^{1}$ then:
You can shift from α to ${ }^{\alpha}$ to resolve type mismatch.

So we can resolve the mismatch as in (8) by shifting from σ (TRAINER) to ${ }^{\wedge} \sigma($ TRAINER $):$
(8) The trainer changes.
(8a) CHANGE(^ $\sigma($ TRAINER))
We will assume that in world w (8a) is true precisely because first the trainer was Michels and later it was Kovácz: the interpretation of $\wedge \sigma$ (TRAINER) in world w is a function that maps all relevant earlier world-times onto Michels and all relevant later ones onto Kovácz.

(9) Michels changes.

Again, CHANGE(MICHELS) is unwellformed. We have to shift MICHELS to ${ }^{\wedge}$ MICHELS:
(9) Michels changes.
(9a) CHANGE($\left.{ }^{\text {MICHELS }}\right)$
We get as pattern:
(7) The trainer is Michels.
(8) The trainer changes.
(9) Michels changes.
(7a) $\sigma($ TRAINER $)=$ MICHELS
(8a) CHANGE(^ (TRAINER))
(9a) CHANGE(^MICHELS)
We note two things:
First, $\wedge \sigma($ TRAINER $)$ and ${ }^{\wedge}$ MICHELS denote different functions in world w.
${ }^{\wedge} \sigma$ (TRAINER) denotes the function f that maps every world v onto the trainer in world v, earlier worlds onto Michels, later worlds onto Kovácz.
${ }^{\wedge}$ MICHELS denotes the function g that maps every world onto Michels.
(7a) only says that in our world w these two functions have the same value: $\mathrm{f}(\mathrm{w})=\mathrm{g}(\mathrm{w})=$ Michels.

Let us assume that z is a world such that $\mathrm{f}(\mathrm{z})=$ Kovácz. Then $\mathrm{f}(\mathrm{z}) \neq \mathrm{g}(\mathrm{z})$, since $\mathrm{f}(\mathrm{z})=$ Michels. hence $\mathrm{f} \neq \mathrm{g}$.

This means that (7a) and (8a) do not entail (9a).
 The pattern is invalid, as it should be.

Second, in (8a) change can mean that the function g takes different values at different times; in (9a) change can only mean that the individual value of f changes his properties, world-view, etc. from earlier world-times to later world-times.

4. THE VALID PATTERN: DE RE READINGS

What about the interpretation on which this pattern is valid?
(7) The trainer is Michels.
(8) The trainer changes.
(9) Michels changes.

On the individual concept analysis, change creates an intensional context. We can get the other reading by assuming that the trainer in (8) can have an interpretation which is de re and takes scope over the intensional context. We can make fruitful use of λ-abstraction to represent this case, as in (8c):
(7a) $\sigma($ TRAINER $)=$ MICHELS
(8b) λx.CHANGE(^x) ($\sigma($ TRAINER))
(8c) λx. CHANGE($\left.{ }^{\wedge} \mathrm{x}\right)$ (MICHELS)
Now, MICHELS is rigid, so (8c) is equivalent to (9a)
(9a) CHANGE(^MICHELS)
If MICHELS has the property that you have if the function that maps every world onto you is a changing function, then the function that maps every word onto Michels is a changing function.

Now (8b) is true in world w if whoever is the trainer in world w (i.e. Michels) has in world w the property λx.CHANGE($\left.{ }^{\wedge} \mathrm{x}\right)$.
λx.CHANGE($\left({ }^{\wedge} \mathrm{x}\right)$ is the property that you have in w if the function that maps every world onto you has the change property, which can only mean that its value, you, has different properties, world views etc at earlier world-times than it has at later worldtimes.

Since the trainer in world w, according to (7a), is Michels, (8a) expresses that Michels has the property λx.CHANGE($\left.{ }^{\wedge} \mathrm{x}\right)$, which means that the function f that maps every world onto Michels has the change property.
But function f is the denotation of ${ }^{\wedge}$ MICHELS, hence, on this reading, (7a) and (8b) entail (9 b), because, on the assumption that (7a) is true, (8 b) and (9 b) express the same thing.

5. THE PRESIDENT

With this instrumentarium we can attack the other problems as well:
(13) The president is a democrat, but (s)he could have been a republican.

The two readings can be represented as in (14) and (15):
(14) $\lambda \times$.DEMOCRAT $\left({ }^{\wedge} \mathrm{x}\right) \wedge \diamond$ REPUBLICAN $\left({ }^{\wedge} \mathrm{x}\right)(\wedge \sigma($ PRESIDENT $))$

The president-function ${ }^{\wedge} \sigma$ (PRESIDENT) has in w the property that an individual concept has if its value in w is a democrat in w , while its value in some other world v is a republican in v .

This is equivalent to (14a):

(14a) DEMOCRAT(`^ $\sigma($ PRESIDENT $)) \wedge \geqslant \operatorname{REP}^{(\vee \wedge} \sigma($ PRESIDENT $\left.)\right)$

The value of the president-function in w is a democrat in w and the value of the president function in some other world v is a republican in v .

And this is equivalent to (14b):
(14b) DEMOCRAT $(\sigma($ PRESIDENT $)) \wedge \diamond$ REPUBLICAN $(\sigma($ PRESIDENT $))$
The president in w is a democrat in w and in some other world v , the president in v is a republican in v .

On this reading (14) is true in the real world w (at time t), where, we assume Kennedy is the president (at t), if in some world v accessible from w a republican, for instance, Nixon, is president (at time t).

The de re reading we get by giving the individual reading wide scope, as in (15):

(15) $\lambda \mathrm{x} . \mathrm{DEMOCRAT}(\mathrm{x}) \wedge \diamond$ REPUBLICAN $(\mathrm{x})(\sigma($ PRESIDENT $))$

The president (at t) in w has the property that an individual has if he/she is a democrat in world $w(a t t)$ and a republican in some other world $v(a t)$.
(15) is equivalent to (15a):
(15) DEMOCRAT($\sigma($ PRESIDENT $)) \wedge \lambda x . \diamond$ REPUBLICAN $(x)(\sigma($ PRESIDENT $))$

The president in w is a democrat in w and has the property
$\lambda x . \diamond$ REPUBLICAN (x), which is the property that you have if in some other world you are a republican.

This cannot be reduced any further.
(14) is true on this reading in the real world w if in some world v accessible from w Kennedy is a republican.

6. NEW PLANETS

Here is a little story. It concerns two astronomical observatories A and B that spot the sky in search of new planets. These observatories are in a fierce competition (on is the Sylvanian astronomical centre, and the other the corresponding Bordurian one). In fact, the astronomers at observatory B are so competitive that it is a bit unpleasant. I tell you (16):
(16) Every new planet that observatory A claims to have discovered, observatory B claims to have discovered first.

But, in fact, there is an added complication, that both you and I know: these observatories are no good; they are always wrong, no new planet has ever been discovered by either of them.

The crucial observation is that \mathbf{I} can assert sentence (16), without committing myself to the existence of new planets.
(It doesn't have to do with the fact that the example has every, the story works just as well for other quantifiers.)

Analysis

-We have, inside the relative clause, an intensional context (claim).
-We have, inside the relative clause a gap, which we interpret as a variable that we λ-abstract over at the level of the head of the relative.
-We make the assumption that if a gap is in an intensional context inside the relative clause, we have a choice of interpreting the gap as an individual variable (in $V A R_{\text {ind }}$) or as an individual concept variable (in VAR ${ }_{i c}$).
This choice is part of the relativization mechanism and is triggered by the intensional context inside the relative clause.
-This gives two interpretations (17a) and (17b):
(17a) EVERY[$\lambda x . N E W P L A N E T(x) \wedge$ CLAIM(A, \wedge DISCOVERED(A,x)), $\lambda x . \operatorname{CLAIM}(\mathrm{B}, \wedge$ DISCOVERED-FIRST(B, x$))]$
(17a) is true in w if for every new planet existing in w of which A has claimed that they discovered it, B has claimed they discovered it first.
(17b) EVERY[$\left.\left.\lambda x . \operatorname{NEWPLANET(x)~} \wedge \operatorname{CLAIM(A,\wedge DISCOVERED(A,}{ }^{\vee} \mathrm{x}\right)\right)$, $\left.\lambda \mathrm{x} \cdot \operatorname{CLAIM}\left(\mathrm{B},{ }^{\wedge} \mathrm{DISCOVERED}-\operatorname{FIRST}\left(\mathrm{B},{ }^{\vee} \mathrm{x}\right)\right)\right]$
(17b) is true in w if for every new planet individual concept of which A has claimed that they discovered an existing instance of it, B has claimed they discovered an existing instance of it first.

What are new planet concepts? We think of those as concepts introduced in the discourse context [here the story] and understood as contextually linked to the story given: the story introduces individual concepts new planet ${ }_{1}$ the concept that was an issue in, say, 1956, and new planet 2 , which was an issue in $1957, \ldots$. These are tentatively existing 'objects', both of which turned out not to be instantiated in the real world w. The predicate NEWPLANET takes these functions in its extension, and EVERY hence quantifies over new-planet individual concepts that have been made relevant in the discourse.
A journalist interested in the controversy, will go to the archives and pull out all cases of putative new planets. The quantification is over those, and not over individual planets.

This means that (17b) does not commit the speaker to the existence of new planets, it just requires new planet individual concepts to be contextually relevant, as in the story given.

In a model, we could have four worlds: w_{0} the real world, and $\mathrm{w}_{1}, \mathrm{w}_{2} \mathrm{w}_{3}$ the worlds compatible with what the Observatories claim three relevant individual concepts:

$$
\begin{array}{ccc}
\mathrm{f}_{1}: \mathrm{w}_{1} \rightarrow \mathrm{~d}_{1} & \mathrm{f}_{2}: \mathrm{w}_{1} \rightarrow \mathrm{~d}_{2} & \mathrm{f}_{3}: \mathrm{w}_{1} \rightarrow \mathrm{~d}_{3} \\
\mathrm{w}_{2} \rightarrow \mathrm{~d}_{1} & \mathrm{w}_{1} \rightarrow \mathrm{~d}_{2} & \mathrm{w}_{1} \rightarrow \mathrm{~d}_{3} \\
\mathrm{w}_{3} \rightarrow \mathrm{~d}_{1} & \mathrm{w}_{1} \rightarrow \mathrm{~d}_{2} & \mathrm{w}_{1} \rightarrow \mathrm{~d}_{3} \\
\mathrm{w}_{\mathrm{o}} \rightarrow \text { venus } & \mathrm{w}_{0} \rightarrow \text { mars } & \mathrm{w}_{0} \rightarrow \mathrm{x}, \text { where } \mathrm{x} \text { is an airplane }
\end{array}
$$

d_{1} may be the non-existent planet Vulcanus (which supposedly circles the earth shielded from vision by Mercurius.
d_{2} is the non-existent planet Ursa Minor Beta (the planet where it is always Saturday afternoon, just before the beach bars close).
d_{3} is the planet Homoterrae which is postulated by the obscure Israeli astronomer Pered Am-ha-aretz.

We assume that:

$$
\left\{\mathrm{f}_{1}, \mathrm{f}_{2}, \mathrm{f}_{3}\right\} \subseteq \lambda \mathrm{x} . \operatorname{NEWPLANET}(\mathrm{x}) \wedge \operatorname{CLAIM}\left(\mathrm{A}, \wedge \operatorname{DISCOVERED}\left(\mathrm{~A},{ }^{\vee} \mathrm{x}\right)\right.
$$

Say: in 1956 A observed Venus and claimed: we have found Vulcanus,
(17b) is true if:

$$
\left\{\mathrm{f}_{1}, \mathrm{f}_{2}, \mathrm{f}_{3}\right\} \subseteq \lambda \mathrm{x} . \operatorname{CLAIM}\left(\mathrm{B}, \wedge \operatorname{DISCOVERED-FIRST}\left(\mathrm{~B},{ }^{\vee} \mathrm{x}\right)\right.
$$

We check the records and find indeed: in 1956, the same week, the Bordurians say: we already made that observation, their spies stole the information from us....

7. HOB-NOB SENTENCES

Similar to this are Hob-nob sentences introduced by Peter Geach in Reference and Generality 1962 which involve quantification over different people's belief, again without the speaker being committed to the existence of witches. Geach discusses the following case: ((18) is Geach's example)

A rumour goes around that there is a witch in the village.
Hob says in the pub: "That explains! That's why my horse got sick." Nob says in church: "And my sow died suddenly! remember?"
(18) Hob believes that a witch blighted his mare, and Nob believes that she killed his sow.

Again, just giving wide scope, but abstracting over individual variables commits the speaker to the existence of witches, as in (19a), but wide scope and abstraction over individual concept variables doesn't, as in (19b):
(19) a SOME[WITCH,
$\lambda x . \operatorname{BELIEVE}($ hob, $\wedge \exists y[\operatorname{MARE}(\mathrm{y}, \mathrm{hob}) \wedge \operatorname{BLIGHT}(\mathrm{x}, \mathrm{y})]) \wedge$ $\operatorname{BELIEVE}(n o b, \wedge \exists \mathrm{z}[\operatorname{SOW}(\mathrm{z}, \mathrm{nob}) \wedge \operatorname{KILL}(\mathrm{x}, \mathrm{z})])$
(19) a SOME[WITCH,
λx.BELIEVE (hob, $\left.\wedge \exists y\left[M A R E(y, h o b) \wedge \operatorname{BLIGHT}\left({ }^{\wedge} x, y\right)\right]\right) \wedge$ BELIEVE(nob, \wedge^{-}z[SOW(z,nob) $\left.\left.\wedge \operatorname{KILL}\left({ }^{\vee} \mathrm{x}, \mathrm{z}\right)\right]\right)$

There is a witch-concept made relevant in the discourse to which both Hob and Nob are linked, for instance, via a rumour that both Hob and Nob heared, and in all Hob's belief-worlds, someone instantiates that concept and blighted Hob's mare, and in all Nob's belief-worlds, someone instantiates that concept and killed Nob's cow.
(There is a lot of philosophical literature about exactly what this causal attachment condition involves.)

With individual concepts we avoid the conclusion that (18) involves a de re belief of Hob and Nob about and individual.

XII. MODAL FORMULAS EXPRESSING PROPERTIES OF THE ACCESSIBILITY RELATION

Let $\mathrm{M}=\left\langle\mathrm{W}_{\mathrm{M}}, \mathrm{R}_{\mathrm{M}}, \mathrm{D}_{\mathrm{M}}, \mathrm{F}_{\mathrm{M}}\right\rangle$ be a model for L_{6}.

The frame of $\mathrm{M}: F_{\mathrm{M}}=\left\langle\mathrm{W}_{\mathrm{M}}, \mathrm{R}_{\mathrm{M}}, \mathrm{D}_{\mathrm{M}}>\right.$

The frame of M is the model minus the interpretation function F_{M}.
In general, a frame is a triple $F=\langle\mathrm{W}, \mathrm{R}, \mathrm{D}>$, with W a non-empty set of possible worlds, R an accessibility relation on W and D a non-empty set of possible individuals.

A model, then is a pair $\mathrm{M}=\langle F, \mathrm{~F}\rangle$, with F a frame and F an interpretation function for the lexical items.
(A set-theoretic subtelty: we don't distinguish between $\langle F, \mathrm{~F}\rangle\left(=\left\langle\left\langle\mathrm{W}_{F}, \mathrm{R}_{F}, \mathrm{D}_{F}\right\rangle, \mathrm{F}\right\rangle\right)$ and $\left\langle\mathrm{W}_{F}, \mathrm{R}_{F}, \mathrm{D}_{F}, \mathrm{~F}\right\rangle$.)

Let φ be an L_{6} sentence.
We define φ is true on frame $F=\left\langle\mathrm{W}_{F}, \mathrm{R}_{F}, \mathrm{D}_{F}\right\rangle$
$\llbracket \varphi \rrbracket_{F}=1, \varphi$ is true on frame F iff
for every interpretation function F for L_{6} such that $\langle F, \mathrm{~F}\rangle$ is a model for L_{6} :

$$
\llbracket \varphi \rrbracket_{\langle F, \mathrm{~F}\rangle}=1 ; \text { otherwise } \llbracket \varphi \rrbracket_{F}=0
$$

φ is true on frame F iff for every interpretation function F for F, φ is true on model $\langle F, \mathrm{~F}\rangle$, false on F otherwise.

Intuitively, φ is true on a frame F iff φ is true in virtue of the structure of the frame, independent of the interpretation of the lexcal items.

Let \mathcal{F}_{P} be the the class of all frames F in which the accessibility relation R_{F} has property P .

Property P of accessibility relations is modally definable, definable in L_{6} iff there is an L_{6} formula φ which is true on all the frames in class \mathcal{F}_{P} and false on every frame not in \mathcal{F}_{P}.

This means, vive versa, that you can check what property of accessibility relations, if any, is defined by a formula φ :

- φ modally defines P iff

1. For every frame $F \in \mathcal{F}_{\mathrm{P}}$ and every interpretation function $\mathrm{F}: \llbracket \varphi \rrbracket_{\langle F, \mathrm{~F}\rangle}=1$
2. For every frame $F \notin \mathcal{F}_{\mathrm{P}}$ there is an interpretation function F such that: $\llbracket \varphi \rrbracket_{\langle F, \mathrm{~F}\rangle}=0$

As above, let us use φ for a contingent non-modal sentence, a formula (without free variables) that can be made true in some worlds and false in others (like SMART(RONYA)).

Here are some of the basic facts (going back to Kripke's work):

FACT $1: \square \varphi \rightarrow \varphi$ defines reflexivity of the accessibility relation.

1. If F is a reflexive frame, a frame where R_{F} is reflexive then $\square \varphi \rightarrow \varphi$ is true on F

Proof:
Let F be a reflexive frame, and w $\in \mathrm{W}_{F}$ and let F be any interpretation function such that $\llbracket \square \varphi \rrbracket_{<F, \mathrm{~F}, \mathrm{w}}=1$.
Then for every $\mathrm{v} \in \mathrm{W}_{F}:$ if $\left.\mathrm{R}_{F}(\mathrm{w}, \mathrm{v})\right\}$ then $\llbracket \varphi \rrbracket_{<F, \mathrm{~F}, \mathrm{v}}=1$.
Since R_{F} is reflexive, $\mathrm{R}_{F}(\mathrm{w}, \mathrm{w})$ and hence $\left.\llbracket \varphi \rrbracket<F, \mathrm{~F}\right\rangle, \mathrm{w}=1$.
a picture:

If $\square \varphi$ is true in w, φ is true in all the accessible worlds, one of which is w, by reflexivity

Hence $\llbracket \square \varphi \rightarrow \varphi \rrbracket<F, \mathrm{~F}>, \mathrm{w}=1$
So $\square \varphi \rightarrow \varphi$ is true in every world in W_{F} if R_{F} is reflexive.
2. If F is not a reflexive frame then, we can make a counterexampe, we can choose an interpretation function F and a world w where $\llbracket \square \varphi \rightarrow \varphi \rrbracket<F, \mathrm{~F}>, \mathrm{w}=0$, which is a world w where $\llbracket \square \varphi \rrbracket<F, \mathrm{~F}>, \mathrm{w}=1$ but $\llbracket \varphi \rrbracket<F \mathrm{~F}>, \mathrm{w}=0$
We choose a world w such that $\langle\mathrm{w}, \mathrm{w}\rangle \notin \mathrm{R}_{F}$. Then we choose an interpretation function F that makes φ true in every world $\mathrm{v} \in \mathrm{W}_{F}$ such that $\mathrm{R}_{F}(\mathrm{w}, \mathrm{v})$, but false in w :

By the assumption about the contingency of φ we can do that.
Hence $\llbracket \square \varphi \rightarrow \varphi \rrbracket<F, \mathrm{~F}\rangle, \mathrm{w}=0$
So, indeed $\square \varphi \rightarrow \varphi$ is true on every reflexive frame (true in every world), and false on non-reflexive frames (meaning, not true in every world).

Hence indeed, ($\square \varphi \rightarrow \varphi$) defined (or characterizes) the class of frames with a reflexive accessibility relation and ($\square \varphi \rightarrow \varphi$) expresses that the accessibility relation is reflexive.

FACT 2: $\square \varphi \rightarrow \square \square \varphi$ defines transitivity of the accessibility relation.

1. If F is a transitive frame, a frame where R_{F} is transitive then $\square \varphi \rightarrow \square \square \varphi$ is true on F

Step 1: Assume $\square \varphi$ is true in w. Then φ is true in all accessible worlds:

Look at all the worlds accessible from $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}$, say:

By transitivity these worlds are accessible from w, and hence φ is true in them as well:

But that means that for each world v which is accessible from w, φ is true in all worlds accessible from v , and hence $\square \varphi$ is true in v .
This shows that $\square \varphi$ is true in all worlds accessible from w:

But if $\square \varphi$ is true in all worlds accessible from w, then $\square \square \varphi$ is true in w:

And that means that $\square \varphi \rightarrow \square \square \varphi$ is true in w.
If R_{F} is not transitive you easily make a counterexample:

You make φ true in all worlds accessible from w , including v_{2}, and false in some worlds accessible from v_{2}, but not from w . This is perfectly possible in R_{F} is not transitive, and is a counterexample.

FACT $2: \Delta \square \varphi \rightarrow \varphi$ defines symmetry of the accessibility relation.

1. If F is a symmetric frame then $\forall \square \varphi \rightarrow \varphi$ is true on F

Assume $\diamond \square \varphi$ is true in w.
Then for some accessible world $\square \varphi$ is true, say v_{1}. Then in all worlds accessible from there φ is true. One of those is w, by symmetry:

Hence $\Delta \square \varphi \rightarrow \varphi$ is true in w.

Priorian Tense logic

In tense logic, the set of worlds W_{F} is renamed T_{F}, the set of moments of time, and the accessibility relation R_{F} is renamed $<_{F}$ and is assumed to be a strict partial order of earlier than.
In Priorian tense logic we introduce four tense operators, two futurate and two past:
P at some time in the past
H at every time in the past
F at some time in the future
G at every time in the future
with the obvious semantics:

$$
\begin{aligned}
& \llbracket \mathrm{P} \varphi \rrbracket_{\mathrm{M}, \mathrm{tg}}=1 \text { inf for some } \mathrm{t}^{\prime} \in \mathrm{T}_{\mathrm{M}}: \mathrm{t}^{\prime}<\mathrm{t} \text { and } \llbracket \varphi \rrbracket_{\mathrm{M}, \mathrm{t}^{\prime}, \mathrm{g}}=1 \\
& \llbracket \mathrm{H} \varphi \rrbracket_{\mathrm{M}, \mathrm{t}, \mathrm{~g}}=1 \text { inf for every } \mathrm{t}^{\prime} \in \mathrm{T}_{\mathrm{M}} \text { if } \mathrm{t}^{\prime}<\mathrm{t} \text { then } \llbracket \varphi \rrbracket_{\mathrm{M}, \mathrm{t}^{\prime}, \mathrm{g}}=1 \\
& \llbracket \mathrm{~F} \varphi \rrbracket_{\mathrm{M}, \mathrm{tg}}=1 \text { inf for some } \mathrm{t}^{\prime} \in \mathrm{T}_{\mathrm{M}}: \mathrm{t}<\mathrm{t}^{\prime} \text { and } \llbracket \varphi \rrbracket_{\mathrm{M}, \mathrm{t}^{\prime}, \mathrm{g}}=1 \\
& \llbracket \mathrm{G} \varphi \rrbracket_{\mathrm{M}, \mathrm{t}, \mathrm{~g}}=1 \text { inf for some } \mathrm{t}^{\prime} \in \mathrm{T}_{\mathrm{M}}: \text { if } \mathrm{t}<\mathrm{t} \text { then } \llbracket \varphi \rrbracket \mathrm{M}, \mathrm{t}^{\prime}, \mathrm{g}=1
\end{aligned}
$$

If you find modal definability interesting, you will find tense logical definability even more interesting.
In tense logic $\mathrm{H} \varphi \rightarrow \mathrm{HH} \varphi$ defines transitivity (and so does and $\mathrm{G} \varphi \rightarrow \mathrm{GG} \varphi$).
$\mathrm{H} \varphi \rightarrow \neg \mathrm{HH} \varphi$ is logically equivalent to $\mathrm{PP} \neg \varphi \rightarrow \neg \varphi$
$\mathrm{H} \varphi \rightarrow \mathrm{HH} \varphi \quad \Leftrightarrow \quad \neg \mathrm{HH} \varphi \rightarrow \neg \mathrm{H} \varphi \quad \Leftrightarrow \quad \mathrm{P} \neg \mathrm{H} \varphi \rightarrow \mathrm{P} \neg \varphi \Leftrightarrow$
$\mathrm{PP} \neg \varphi \rightarrow \mathrm{P} \neg \varphi$
That means that the formula $\operatorname{PP} \varphi \rightarrow \mathrm{P} \varphi$ also defined transitivity.
What about $\mathrm{P} \varphi \rightarrow \mathrm{PP} \varphi$?
As it turns out $\mathrm{P} \varphi \rightarrow \mathrm{PP} \varphi$ expresses that the temporal order is dense: between any two points of time there is a third.
Intuition:

Assume that $\mathrm{P} \varphi$ is true at t_{0}. Then at some past moment, say, $\mathrm{t}_{2} \varphi$ is true.
By density there is a point between t_{2} and t_{0}, say, t_{1}, and since φ is true at $\mathrm{t}_{2}, \mathrm{P} \varphi$ is trua at t_{1}, because t_{2} is in the past of t_{1}. But then $\operatorname{PP} \varphi$ is true at t_{0}, because t_{1} is in the past of t_{0}.
Again, giving a counterexample on a non-dense frame is simple.

XIII. SEMANTICS AND PRAGMATICS OF CONDITIONALS

(1) a. It is not the case that if it rains it is cold.
b. It rains and it isn't cold.
c. It may rain and not be cold.

Problem: $\quad \neg(\varphi \rightarrow \psi) \Leftrightarrow \quad(\varphi \wedge \neg \psi) \quad$ material implication \rightarrow
Intuitively: $\quad \neg(\varphi \gg) \Leftrightarrow \diamond(\varphi \wedge \neg \psi) \quad$ natural language implication
That means: $\quad(\varphi \gg) \Leftrightarrow \neg \diamond(\varphi \wedge \neg \psi)$

$$
\Leftrightarrow \square \neg(\varphi \wedge \neg \psi)
$$

$$
\Leftrightarrow \quad \square(\varphi \rightarrow \psi)
$$

Thus: conditionals are modals.

In the following discussion we will assume an informational interpretation of the modals \square, \diamond and $>$.
By this, I mean the following.
We will assume in our models an accessibility relation I.
The modal base I represents: what follows from or is compatible with the conversional information.

This means:
For every world $\mathrm{w} \in \mathrm{W}:\{\mathrm{v} \in \mathrm{W}: \mathrm{I}(\mathrm{w}, \mathrm{v})\}$ is the set of all worlds compatible with conversational information in w.
Notation: $\mathrm{I}_{\mathrm{w}}=\{\mathrm{v} \in \mathrm{W}: \mathrm{I}(\mathrm{w}, \mathrm{v})\}$
We introduce the set of all worlds where φ is true:

$$
\llbracket \varphi \rrbracket_{\mathrm{M}}=\left\{\mathrm{w} \in \mathrm{~W}: \llbracket \varphi \rrbracket_{\mathrm{M}, \mathrm{w}}=1\right\}
$$

As usual:
$\llbracket \square \varphi \rrbracket_{\mathrm{M}, \mathrm{w}}=1$ iff for every $\mathrm{v} \in \mathrm{I}_{\mathrm{w}}: \llbracket \varphi \rrbracket_{\mathrm{M}, \mathrm{v}}=1$
$\square \varphi$ is true in $w \operatorname{iff} \varphi$ follows from the information in w.
Equivalently:
$\llbracket \square \varphi \rrbracket_{\mathrm{M}, \mathrm{w}}=1$ iff $\mathrm{I}_{\mathrm{w}} \subseteq \llbracket \varphi \rrbracket_{\mathrm{M}}$
$\llbracket \diamond \varphi \rrbracket_{M, \mathrm{w}}=1$ iff for some $\mathrm{v} \in \mathrm{I}_{\mathrm{w}}: \llbracket \varphi \rrbracket_{\mathrm{M}, \mathrm{v}}=1$
$\Delta \varphi$ is true in w iff φ is compatible with the information in w.
Equivalently:
$\llbracket \diamond \varphi \rrbracket_{\mathrm{M}, \mathrm{w}}=1$ iff $\mathrm{I}_{\mathrm{w}} \cap \llbracket \varphi \rrbracket_{\mathrm{M}} \neq \emptyset$
$\llbracket(\varphi>\psi) \rrbracket_{\mathrm{M}, \mathrm{w}}=1$ iff for every $\mathrm{v} \in \mathrm{I}_{\mathrm{w}}:$ if $\llbracket \varphi \rrbracket_{\mathrm{M}, \mathrm{v}}=1$ then $\llbracket \psi \rrbracket_{\mathrm{M}, \mathrm{v}}=1$
Equivalently:
$\llbracket(\varphi>\psi) \rrbracket_{\mathrm{M}, \mathrm{w}}=1$ iff $\mathrm{I}_{\mathrm{w}} \cap \rrbracket \varphi \rrbracket_{\mathrm{M}} \subseteq \llbracket \psi \rrbracket_{\mathrm{M}}$
$\mathrm{I}_{\mathrm{W}} \cap \llbracket \varphi \rrbracket_{\mathrm{M}}$ is the result of adding φ to your information
$(\varphi>\psi)$ is true in w iff ψ follows from the result of adding φ to I_{w}.

GRICE'S MAXIM OF QUALITY.

"Do not say what you know not to be true."

CASE A: Non-modal statements.

Only say φ in w if φ follows from your information.

Quality for non-modal statements $\boldsymbol{\varphi}$:

Say φ in w only if $\square \varphi$ is true in w

CASE B: Modal statements.

Modal statements are already themselves about I:

Quality for modal statements $\boldsymbol{\varphi}$:

Say φ in w only if φ is true in w
So:
Quality for (φ 》 ψ):
Say $(\varphi \nLeftarrow)$ in w only if $(\varphi \ngtr \psi)$ is true in w

IRRELLEVANT ENTAILMENTS

FACT 1: $\square \psi \Rightarrow(\varphi \Downarrow \psi)$
Reason: If ψ is true in every world compatible with the information, then ψ is also true in every world compatible with the information where φ is true.

FACT 2: $\square \neg \varphi \Rightarrow(\varphi \gg)$
Reason: If φ is false in every world compatible with the information, then ψ is true in every world compatible with the information where φ is true.

Hence:
both $\square \psi$ and $\square \neg \varphi$ are semantically stronger statements than (φ).
In all the following discussion, we assume that φ and ψ themselves are non-modal statements.

For non-modal statements, Quality says:
only say ψ if $\square \psi$ is true
only say $\neg \varphi$ if $\square \neg \varphi$ is true
We conclude:

With the maxim of quality:

ψ is pragmatically a stronger statement than (φ ゆ)
$\neg \varphi$ is pragmatically a stronger statement than $(\varphi \stackrel{\psi)}{ }$

GRICE'S MAXIM OF QUANTITY.

"Give as much information as you can (but not more than is necessary)"

Quantity:

If φ is pragmatically stronger than ψ, and both are relevant, etc., then you should say φ rather than ψ.

Consequently:
If $(\varphi \ngtr \psi)$ is true in w and $\square \psi$ is true in w, then, according to the maxims, you should say ψ rather than $(\varphi>\psi)$

If $(\varphi>\psi)$ is true in w and $\square \neg \varphi$ is true in w, then, according to the maxims, you should say $\neg \varphi$ rather than (φ)

If $(\varphi>\psi)$ is false in w, you shouldn't say $(\varphi>\psi)$ at all in w.

The square of informational situation types for (φ > $\boldsymbol{\text {) }}$. (Veltman 1986)

(1) $\square \varphi$	(2) $\square \varphi$	(3) $\square \varphi$
$\square \psi$	$\Delta \psi \diamond \neg \psi$	$\square \neg \psi$
(4) $\diamond \varphi \diamond \neg \varphi$	(5) $\diamond \varphi \diamond \neg \varphi$	(6) $\diamond \varphi \diamond \neg \varphi$
$\square \psi$	$\rangle \psi \diamond \neg \psi$	$\square \neg \psi$
$\begin{gathered} \hline \text { (7) } \square \neg \varphi \\ \square \psi \\ \hline \end{gathered}$	$\begin{aligned} & \text { (8) } \square \neg \varphi \\ & \diamond \psi \diamond \neg \psi \end{aligned}$	$\begin{array}{r} \text { (9) } \quad \square \neg \varphi \\ \square \neg \psi \\ \hline \end{array}$

These are all the possible logical informational situations with respect to φ and ψ : φ can follow from the information, φ can be incompatible with the information, of both φ and $\neg \varphi$ can be compatible. The same for ψ.
That gives 9 combinations.
But now we argue:
FACT 1: In situation types (2), (3) and (6), (φ) ψ) is false.
Hence, the assertion of (φ ゆ $)$ in situations of type (2), (3) or (6) violates Quality.
namely: $(\varphi>\psi)$ is false in w iff $\diamond(\varphi \wedge \neg \psi)$ is true in w.
-In every world w of type $2, \varphi$ is true in every world in I_{w} (since $\square \varphi$ is true in w). In some world v in $\mathrm{I}_{\mathrm{w}} \neg \psi$ is true (since $\Delta \neg \psi$ is true in w).
Hence in that world v in $\mathrm{I}_{\mathrm{w}}(\varphi \wedge \neg \psi)$ is true.
Hence $\diamond(\varphi \wedge \neg \psi)$ is true in w.
Hence $(\varphi>\psi)$ is false in w.
-In every world w of type $6, \neg \psi$ is true in every world in I_{w} (since $\square \neg \psi$ is true in w). In some world v in $\mathrm{I}_{\mathrm{w}} \varphi$ is true (since $\forall \varphi$ is true in w).
Hence in that world v in $\mathrm{I}_{\mathrm{w}}(\varphi \wedge \neg \psi)$ is true.
Hence $\diamond(\varphi \wedge \neg \psi)$ is true in w.
Hence $(\varphi>\psi)$ is false in w.
-In every world w of type $3, \varphi$ is true in every world in I_{w} and $\neg \psi$ is true in every world in I_{w}, hence in every world v in $\mathrm{I}_{\mathrm{w}}(\varphi \wedge \neg \psi)$ is true in v .
Now, we make the plausible pragmatic assumption that the information so far in w is consistent. This assumption says that $\mathrm{I}_{\mathrm{w}} \neq \emptyset$.
This means that there is a world v in I_{w}, and hence $\diamond(\varphi \wedge \neg \psi)$ is true in w .
Hence $(\varphi \bullet \psi)$ is false in w.
This means that the these cases are not compatible with Gricean Felicity:

$\text { (1) } \square \varphi$	(2)	(3)
(4) $\diamond \varphi \diamond \neg \varphi$ $\square \psi$	(5) $\diamond \varphi \diamond \neg \varphi$ $\diamond \psi \diamond \neg \psi$	(6)
(7) $\square \neg \varphi$ $\square \psi$	$\begin{aligned} & \text { (8) } \square \neg \varphi \\ & \diamond \psi \diamond \neg \psi \end{aligned}$	$\begin{array}{r} \text { (9) } \square \neg \varphi \\ \square \neg \psi \\ \hline \end{array}$

FACT 2: In situations of type (1), (4) and (7), assertion of (φ) ψ) violates quantity.
Namely, in these situations $\square \psi$ is true.
Since ψ is a pragmatically stronger statement than ($\varphi>\psi$), you should, by quantity, in such situations assert ψ rather than $(\varphi$ ヤ).

This means that the these cases are not compatible with Gricean Felicity:

FACT 3: In situations of type (7), (8) and (9), assertion of (φ) ψ) violates quantity.

Namely, in these situations $\square \neg \varphi$ is true.
Since $\neg \varphi$ is a pragmatically stronger statement than $(\varphi \boxtimes \psi)$, you should, by quantity, in such situations assert $\neg \varphi$ rather than ($\varphi>\psi$).

This means that the these cases are not compatible with Gricean Felicity:

(1)	(2)	(3)
(4)	$(5) \diamond \varphi \diamond \neg \varphi$	
	(6)	
(7)	(8)	(9)

From this we conclude:
CORROLLARY: The only situations where $(\varphi>\psi)$ is asserted in accordance with Quality and Quantity are situations of type (5).

Hence:
Assertion of $(\varphi>\psi)$ conversationally implicates $\diamond \varphi, \diamond \neg \varphi, \Delta \psi, \Delta \neg \psi$. These implicatures are called the clausal implicatures of $(\varphi>\psi)$.

Relevance.

Situation types (1), (4), (7), (8), (9) are situation types where the conditional $(\varphi>\psi)$ is true for irrellevant reasons: the conditional is true, not because there is a relevant connection between the truth of φ and the truth of ψ, but because of some facts about φ or some facts about ψ.

Situation type (5) excludes these irrelevant reasons: in situations of type (5), the conditional is true because all φ-worlds in I_{w} are ψ-worlds.

In the picture below we partition the set of all worlds into four parts: the set of worlds where φ and ψ are both true, the set of worlds where φ and ψ are both false, the set of worlds where φ is true but ψ false, and the set of worlds where ψ is true but φ false:

Now we let w be any world in W of type (5) where (φ) is true.
This means that I_{w} lies inside W in the following way:
If $(\varphi>\psi)$ is uttered in accordance with the maxims,

The information I_{w} does not overlap the set of worlds where $(\varphi \wedge \neg \psi)$ is true.
Now, there must be a reason why your information is structured this way.
As you can see from the picture, it's not because you already know that ψ is true, or that you already know that φ is false. You know neither.
The reason will have to do with some independent connection between φ and ψ that you assume:

For instance, assume $(\varphi>\psi)$ is If it rains it is cold.
-The reason may be something like the following:
a.) I_{w} is restricted to worlds that respect the laws of nature, one of them being that: rain is produced by excessive humidity.
b.) I_{w} is restricted to worlds that respect a meteorological fact about Holland: in Holland, excessive humidity only happens at low temperatures.
c.) I_{w} is restricted to worlds where you are in Holland.

With these three assumptions about $\mathrm{I}_{\mathrm{w}}, \mathrm{I}_{\mathrm{w}}$ will not contain worlds where it rains but isn't cold. Hence If it rains it is cold is true in w (relative to I_{w}, of course).

So: If your information contains the information that you are in Israel, your informational situation may be:

And your information does not support: If it rains it is cold.
But, if your information contains the information that you are in Holland, it will look like:

And if it rains it is cold is true in w (relative to I_{w})

The reason may be something quite different, for instance:
You know that (i.e. in every world in I_{w} it is true that) John owns a mackintosh, a leather motorcycle coat, and an afghan coat and he always wears one of them.

But you also know that:
-When it is cold, John wears his leather coat when it rains and his Afghan coat when it doesn't rain (they are both warm).
-When it is warm, he wears his macintosh when it rains,
-but when it is warm and dry he wears his leather coat, because that is when he rides his motorcycle (a family heirloom that he wouldn't ride in the rain or in the cold).

The picture that represents this information is indicated below:

$\left.$| A | B |
| :--- | :--- |
| rain cold
 LEATHER COAT | dry
 AFGHAN COAT |
| MACINTOSH
 rain | warm | | LEATHER COAT |
| :--- |
| dry |
| warm | \right\rvert\,

Now look at the following dialogue:
A: Is it cold out, dear?
B [Looking out of the window, seeing John pass by wearing his leather coat] If it rains, it is.

The information as updated with the proposition that John is wearing his leather coat is:

In other words: you know now that it is either cold and rainy or dry and warm. If it rains, it is not dry and warm, hence cold.

Given these informational options, it is indeed true that if it rains it is cold.

Pragmatic relevance versus semantic relevance.

We do not semantically require the truth of $(\varphi \gg)$ to express a relevant connection between the truth of φ and the truth of ψ.
This means: we do not make $(\varphi \longmapsto \psi)$ false in situations of type (1), (4), (7), (8), (9) for two important reasons:

1. $(\varphi \Perp \psi)$ is pragmatically incorrect in these situations anyway.

So we don't have to put relevance into the semantics to explain the 'funnyness' of an inference: " ψ, hence $(\varphi>\psi)$."
2. We use this semantics, the maxims, and the above square of situation types to explain the usage of rhetorical conditionals.

USING ROWS AND COLUMNS IN RHETORICAL CONDITIONALS

(Veltman 1986)
BASIC ASSUMPTION 1: (Except in irony, which we are not studying here) We assume that the assertion of $(\varphi>\psi)$ is made in accordance with the maxim of Quality, whether or not the conditional is rhetorical or not.

BASIC ASSUMPTION 2:

Rhetorical conditionals are relevance connection violations:
Their assertion signals that there isn't a relevant connection between the truth of φ and the truth of ψ.
This means that the assertion of a rhetorical conditional signals that situations of type (5.) do not obtain.

Rhetorical Conditionals:

COL. 1	COL. 2	COL. 3	
(1) $\square \varphi$ $\square \psi$	(2)	(3)	ROW 1
$(4) ~ \diamond \varphi \diamond \neg \varphi$ $\square \psi$	(5)	(6)	ROW 2
$(7) \square \neg \varphi$ $\square \psi$	(8) $\square \neg \varphi$ $\diamond \psi \diamond \neg \psi$	(9) $\square \neg \varphi$ $\square \neg \psi$	ROW 3

Note:
On row 1: (1) is the only available type of situation.
On row 2: (4) is the only available type of situation.
On column 2: (8) is the only available type of situation.
On column 3: (9) is the only available type of situation.
Situation type (7) is the only type of situation that is not the only available type at any row or column.

ASSUMPTION 3:

Rhetorical conditionals use rows and columns.
They signal that situation type (5) does not obtain, and instruct you to find a row or column, where only one type of situation is available, and derive the consequences from that.

Consequently: situation type (7) is not available for rhetorical conditionals. The idea here is that situation type (7) gives an ambiguous instruction.
We get:

The square of informational possibilities for rhetorical conditionals:

COL. 1	COL. 2	COL. 3	
$(1) \square \varphi$ $\square \psi$	(2)	(3)	ROW 1
$(4) \diamond \varphi \diamond \neg \varphi$ $\square \psi$	(5)	(6)	ROW 2
(7)	$(8) \square \neg \varphi$ $\diamond \psi \diamond \neg \psi$	(9) $\square \neg \varphi$ $\square \neg \psi$	ROW 3

All examples are from Veltman 1986.

TYPE 1

(1) She's on the wrong side of fourty, if she is a day.
ψ, if φ
(2) If there's anything I can't stand, it's getting caught in rushhour traffic
if φ, ψ
Analysis of (1):
Obviously, she is at least a day: $\square \varphi$ is true in w.
We look in the table, and see that only type 1 is compatible with this.
We conclude: $\square \psi$ is true in w.
Thus (1) is a rhetorical way of saying ψ : She's over fourty.

Analysis of (2):

Obviously, there is at least something I can't stand (since I am human).
Again, $\square \varphi$ is true in w.
We conclude: (2) is a rethorical way of saying ψ : I can't stand being caught in rushhour traffic.

COL. 1	COL. 2	COL. 3	
$(1) \square \varphi$ $\square \psi$	(2)	(3)	ROW 1
$(4) \diamond \varphi \diamond \neg \varphi$ $\square \psi$	(5)	(6)	ROW 2
(7)	(8) $\square \neg \varphi$ $\diamond \psi \diamond \neg \psi$	(9) $\square \neg \varphi$ $\square \neg \psi$	ROW 3

TYPE 9

(3) If this is true, then I'm the empress of China.
(4) If this happens, I'll eat my hat.
(5) I'll be hanged, if that happens.
(6) If this is true, I am a Dutchman/a monkey's uncle.

If φ, then ψ If φ, then ψ ψ, if φ If φ, then ψ

Analysis of (3): (the other cases are similar)
Obviously, I am not the empress of China.
$\square \neg \psi$ is true in w.
We look in the table and see that only type (9) is compatible with this.
We conclude: $\square \neg \varphi$ is true in w.
Thus (3) is a rhetorical way of saying $\neg \varphi$: This isn't true.

COL. 1	COL. 2	COL. 3	
$(1) \square \varphi$ $\square \psi$	(2)	(3)	ROW 1
$(4) \diamond \varphi \diamond \neg \varphi$ $\square \psi$	(5)	(6)	ROW 2
(7)	$(8) \square \neg \varphi$ $\diamond \psi \diamond \neg \psi$	$(9) \square \neg \varphi$ $\square \neg \psi$	ROW 3

TYPE 4

(7) There's coffee in the pot, if you want some. ψ, if φ
(8) I paid back that fiver, if you remember.
(9) If I may interrupt you, you're wanted on the telephone.

$$
\begin{aligned}
& \psi, \text { if } \varphi \\
& \text { if } \varphi, \psi
\end{aligned}
$$

Analysis:

Note first that all these cases are clearly relevance violations: you wanting coffee, doesn't make there to be coffee in the pot, unless you're a magician, which you're not.

These cases are all cases, where politeness considerations require us to assume that: $\Delta \varphi$ and $\Delta \neg \varphi$ are true in w.
-Maybe you want coffee, maybe not (it would be impolite of me to assume that I know what you want).
-You may remember, you may not (don't even think I am suggesting that you know it very well).
-Maybe I am allowed to interrupt you, maybe not (of course, I can't look in the mind of really busy people).

We look in the table, and see that only type (4) is compatible with this.
We conclude: $\square \psi$ is true in w.
Hence (7)-(9) are rhetorical ways of saying ψ :
-There is coffee in the pot.
-I did pay back that fiver.
-You're wanted on the telephone.

COL. 1	COL. 2	COL. 3	
$(1) \square \varphi$ $\square \psi$	(2)	(3)	ROW 1
$(4) \diamond \varphi \diamond \neg \varphi$ $\square \psi$	(5)	(6)	ROW 2
(7)	(8) $\square \neg \varphi$ $\diamond \psi \diamond \neg \psi$	(9) $\square \neg \varphi$ $\square \neg \psi$	ROW 3

TWO MORE CASES OF TYPE 4

(10) This is the best book of the month, if not the year.

$$
\psi \text {, if } \neg \varphi
$$

This case is similar, but can be argued also in a different way.
We assert: ($\neg \varphi$ 》 ψ)
The situation type is once again: $\Delta \varphi$ and $\diamond \neg \varphi$ are true in w. Maybe it is the best book of the year, maybe not.
So we could, following type 4 , conclude $\square \psi$.
But this time you also know something else:
$(\varphi \triangleright \psi)$ is trivially true, true in all worlds.
If it is the best book of the year, it is the best book of the month.
This means that in asserting $(\neg \varphi>\psi)$, we can conclude, with quality and the above fact:
$(\neg \varphi \Downarrow \psi) \wedge(\varphi>\psi)$ is true in w.
But: $(\neg \varphi>\psi) \wedge(\varphi>\psi) \Rightarrow \square \psi$
So also in this way we conclude: $\square \psi$ is true in w:
(10) is a rhetorical way of saying ψ : This is the best book of the month.

COL. 1	COL. 2	COL. 3	
$(1) \square \varphi$ $\square \psi$	(2)	(3)	ROW 1
$(4) \diamond \varphi \diamond \neg \varphi$ $\square \psi$	(5)	(6)	ROW 2
(7)	(8) $\square \neg \varphi$ $\diamond \psi \diamond \neg \psi$	$(9) \square \neg \varphi$ $\square \neg \psi$	ROW 3

(11) If there's anything you need, my name is Marcia.
(11) has two natural uses, one of type (5) (a normal conditional), one of type (4).

Type 5: (11) is really short for (11')
(11') If there's anything you need, call for me, Marcia.
My name is Marcia is like an appositive on a suppressed consequent: call for me. $\left(11^{\prime}\right)$ is a normal relevant conditional with an appossitive.

Type 4:

Your needing something doesn't make my name Marcia.
I am a polite waitress, so of course I don't assume that I know whether you will be needing something or not.
But this restaurant is in California, and in restaurants in California waitresses are not just serving machines, but real persons, who have names (but note, only first names, we are, after all, in America).
(11) is my polite way of telling you that my name is Marcia.

COL. 1	COL. 2	COL. 3	
$(1) ~$ $\square \psi$	(2)	(3)	ROW 1
$(4) \diamond \varphi \diamond \neg \varphi$ $\square \psi$	(5)	(6)	ROW 2
(7)	(8) $\square \neg \varphi$ $\diamond \psi \diamond \neg \psi$	(9) $\square \neg \varphi$ $\square \neg \psi$	ROW 3

TYPE 8

(12) If it doesn't rain tomorrow, then it's going to pour.
(13) [Muhammed Ali:] If I don't beat him, I'll thrash him.

$$
\begin{aligned}
& \text { If } \neg \varphi \text {, then } \psi \\
& \text { If } \neg \varphi \text {, then } \psi
\end{aligned}
$$

These cases are similar to example (10).
You can argue that I don't know whether it is going to pour tomorrow or not.
Even Ali doesn't know whether he is going to thrash him or not.
So: $\Delta \psi$ and $\diamond \neg \psi$ are true in w.
This is only the case in situation type (8), so you can conclude $\square \neg \neg \varphi$, since the antecedent of the conditional was $\neg \varphi$. $\square \neg \neg \varphi \Leftrightarrow \square \varphi$, so we conclude $\square \varphi$.

As in the case of example (10), there is another way of analyzing the case:

$(\psi \longmapsto \varphi)$ is trivially true, true in all worlds.

If it is going to pour, it is going to rain. If I'll thrash him, I'll beat him.

So, again, from quality and the above fact we conclude:
$(\neg \varphi>\psi) \wedge(\psi \longmapsto \varphi)$ is true in \mathbf{w}.
But: $(\neg \varphi>\psi) \wedge(\psi>\varphi) \Rightarrow \square \varphi$.
So we conclude: $\square \varphi$ is true in w.
Hence, (12) and (13) are rhetorical ways of saying φ (the negation of the antecedent):
-It's going to rain.
-I'll beat him.

CONCLUSION: The modal semantics of the conditional and the informational interpretation of the maxims explains the relevance constraint on the normal use of the conditional, and it explains the interpretations of rhetorical conditionals.

Summary of rows and columns for rhetorical conditional:

TYPE	ASSERTION	BACKGROUND	CONCLUSION	CONVEYS
1	$(\varphi$ P	$\square \varphi$	$\square \psi$	ψ
4	$(\varphi>\psi)$	$\diamond \varphi \diamond \neg \varphi$	$\square \psi$	ψ
8	$(\varphi>\psi)$	$\diamond \psi \diamond \neg \psi$	$\square \neg \varphi$	$\neg \varphi$
9	$(\varphi>\psi)$	$\square \neg \psi$	$\square \neg \varphi$	$\neg \varphi$

Given our assumptions, these are the only things that can be conveyed by the assertion rhetorical conditionals.

In general, if assert a conditonal $(\varphi>\psi)$ and we signal by rhetorical means that situation type (5) is unavailable, then:
-we convey ψ, if we make clear that φ is compatible with the information (cases 1 and 4).
-we convey $\neg \varphi$, if we make clear that $\neg \psi$ is compatible with the information (cases 8 and 9).

This generalization relies on the plausible assumption (that we made earlier) that I_{w} is not empty. In that case, $\square \varphi$ entails $\diamond \varphi$, and $\square \neg \psi$ entails $\diamond \neg \psi$, so that we can reduce case (1) to case (4), and case (9) to case (8).

In other words, on the assumption that I_{w} is not empty, there are really two main situation types:
(1) We assert $(\varphi>\psi)$ in w.
(2) We signal that situation type (5) is unavailable.
(3) $\Delta \varphi$ is true in w.

We conclude: ψ
A rhetorical conditional conveys the consequent, if the antecedent is compatible with the information.
(1) We assert ($\varphi>\psi)$ in w.
(2) We signal that situation type (5) is unavailable.
(3) $\diamond \neg \psi$ is true in w.

We conclude: $\neg \varphi$
A rhetorical conditional conveys the negation of the antecedent, if the negation of the consequent is compatible with the information.

This works, on the assumption of rows and columns that we made (assumption 3):
Rhetorical conditionals ignore the cases where both the consequent and the negation of the antecedent follow from the information (cases of type 7).

One would think that the latter is, because in cases of type (7), the instruction is ambiguous: the hearer wouldn't know whether the speaker wants him or her to to use the negation of the antecedent to conclude the consequent, or the consequent to conclude the negation of the antecedent.

In the philosophical literature rhetorical conditionals are called Bisquit conditionals, based on an early example in the literature. Rhetorical conditionals is a better term, so I use that here.

Similar arguments can be made for rhetorical disjunctions:
Informationally, again, you should only say $\varphi \vee \psi$ is $\square(\varphi \vee \psi)$ ist true.
We derive here too that the normal utterance situation for a conditional is is the situation: $\diamond \varphi, \diamond \neg \varphi, \diamond \psi, \diamond \psi$.

Look at the square:
The square of informational situation types for $\square(\varphi \vee \psi)$.

(1) $\square \varphi$	(2) $\square \varphi$	(3) $\square \varphi$
$\square \psi$	$\rangle \psi \diamond \neg \psi$	$\square \neg \psi$
(4) $\diamond \varphi \diamond \neg \varphi$ $\square \psi$	(5) $\square(\varphi \vee \psi)$	(6) $\square(\varphi \vee \psi)$
	$\Delta \varphi \diamond \neg \varphi$	$\Delta \varphi \diamond \neg \varphi$
	$\rangle_{\psi} \Delta_{\neg \psi}$	$\square \neg \psi$
(7) $\square \neg \varphi$ $\square \psi$	(8) $\square(\varphi \vee \psi)$	(9) $\square \neg \varphi$
	$\square \neg \varphi$	$\square \neg \psi$

In situations $1,2,3,4,7 \square(\varphi \vee \psi)$ is true because a stronger statement is true.
In situation $9 \square(\varphi \vee \psi)$ is false.
In situation 5, 6, and 8 we would violate quality unless we restrict ourselves to the part where $\square(\varphi \vee \psi)$ is true. So we do that (in red)
But then in situation 6 also $\square \varphi$ is true and in $8 \square \psi$ is true, so these too are situations where you should have made a stronger statement.
Hence, here too, the only situation where you can utter the disjunction in agreement with the maximes is situation (5).

Here the natural rhetorical case is a situation where $\square \neg \psi$ will allow you to conclude that $\square \varphi$, and hence φ :
(1) I'll find him, or my name isn't Sherlock Holmes.

