
 1 

 

 

 

 

 

 

 

 

 

PART 2: MODALITY 
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I. MODAL EXPRESSIONS IN DIFFERENT CATEGORIES 

 

Auxiary verbs. 

(1)  a.  You may be excused. b. I must be hungry.  

       c. You can't do that.  d. You have to come home at 9.00 

 e.  I could have been rich. f.  I had to be in Amsterdam. 

 f.  I might have known that. 

  

Adverbials. 

(2)  a. Possibly, John met Mary in Amsterdam. 

    b. I don't necessarily think that was a good idea. 

 c. Maybe John will come to the party. 

 

Adjectives. 

(3) a. This is a possible counterexample. 

 b. John is a potential candidate. 

 c. It is possible that John will try to reach you. 

 d.  John was able to come. 

 

Suffixes: -able. 

(4) a. This glass is highly breakable. 

 b. This is unthinkable. 

 c.  The rent is payable at the end of the month. ! zahlbar but not betaalbaar 

 

Generic present  

(5) This car goes 200 km/h/ This car does 300 km/h/ 

Fred eats horsemeat (but he hasn’t yet) 

 

Progressive 

(5a) I am drawing a circle  

(5b) Professor Lupin was creating a boggard when he was interrupted. 

 

Counterfactual conditionals. 

(6) a. If she hadn't left me, I wouldn't be so miserable now. 

 b. If Verdi and Bizet had been co-patriots, Bizet might have been italian. 

... 
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II. MODALS CREATE INTENSIONAL CONTEXTS 

 

Substitution of extensions (=extensionality) is not valid. 

 

(7)  a. Proust could have been the author of Ulysses. 

 b. The author of Ulyssess is the author of Finnegans Wake. 

do not entail 

 c. Proust could have been the author of Finnegans Wake. 

 

(8) a. If Henrico Granados had written Ulysses, then the author of Ulysses would  

    have died on m.s Essex. 

b. The author of Ulysses is James Joyce. 

do not entail 

 c. If Henrico Granados had written Ulysses, James Joyce would have died  

    on m.s. Essex. 

 

De dicto-de re ambiguities. 

 

(9) I could have been married to a Swede. 

 

Situation 1: 

Helga and I considered marriage.  In the end we decided not to.  (7) is true. de re. 

Situation 2: 

There was a time, when I was "into" Sweden.  If I had met a Swedish girl then (which 

I didn't), I might have proposed marriage.  (7) is true. de dicto. 

 

(10) Every suspect may be innocent. 

 

a. For each suspect, the possibility that that suspect is innocent has to be kept open 

(though we may know for sure that one of them did it): de re. 

 

b. We have to keep open the possibility that the one who did it is not among our 

suspects. de dicto. 

 

Ambiguities with negation: 

(1) a. You can not love it, but it is completely unique [γ] ambiguous 

 reading a: it is unloveable to anybody    not - can 

 reading b: there are those that don't love it    can - not 

      b. You can't love it, but is is completely unique    not ambiguous 

reading a: it is unloveable to anybody    not - can 
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III. INTERACTION OF MODALS WITH , ,  

 

I will use the modals could have and had to as examples. 

We assume, for ease of examples, that we restrict ourselves to natural models in 

which: 

 I stayed  I didn't leave STAY(I)  LEAVE(I) 

In our formal language we use: 

 □  for necessity, had to, must 

 ◊ for possibility, could have, may 

 

Interaction with negation: 

 

(11) a. I couldn't have stayed. ◊LEAVE(I) 

 b. I had to leave.  □ LEAVE(I) 

(11a)  (11b) 

 

(12) a. I could have stayed.  ◊ LEAVE(I) 

 b. I didn't have to leave.  □ LEAVE(I) 

 (12a)  (12b) 

 

(13) a. I couldn't have left.   ◊ LEAVE(I) 

 b. I had to stay.  □  LEAVE(I) 

 (13a)  (13b) 

 

(14) a. I could have left.  ◊ LEAVE(I) 

 b. I didn't have to stay.  □ LEAVE(I) 

 (14a)  (14b) 
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Interaction with conjunction and disjunction. 

 

(1) I could have sung or danced.   (1) ◊ (SING(I)  DANCE(I)) 

(2) I could have sung or I could have danced.  (2) ◊ SING(I)  ◊ DANCE(I)  

(3) I could have sung and I could have danced. (3) ◊ SING(I)  ◊ DANCE(I) 

(4) I could have sung and danced.   (4) ◊ (SING(I)  DANCE(I)) 

 

As always, (3)  (2), and (2) does not entail (3). 

 

-Look at (3) and (4). 

Clearly, (4)  (3):  If I could have sung and danced, I could have sung, etc. 

But (3) does not entail (4).   

I am the kind of person who can sing, and who can dance, but, like Gerald Ford, I can 

do only one thing at a time.  (3) is true, but (4) is false. 

 

cf also:    

(15) a. I could have stayed and I could have left. 

 b. I could have stayed and left. 

 

(15a) can easily be true, but (15b) is a contradiction, so (15a) does not entail (15b). 
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(1) I could have sung or danced.   (1) ◊ (SING(I)  DANCE(I)) 

(2) I could have sung or I could have danced.  (2) ◊ SING(I)  ◊ DANCE(I)  

(3) I could have sung and I could have danced. (3) ◊ SING(I)  ◊ DANCE(I) 

(4) I could have sung and danced.   (4) ◊ (SING(I)  DANCE(I)) 

 

 

-Look at (1) and (2). 

If I could have sung, then I could have sung or danced, etc. 

So (2)  (1). 

 

In several kinds of contexts, we may feel that (1) entails (3).   

 

But not in all! 

 

I know that either dancing was allowed and singing forbidden, or singing was allowed 

and dancing forbidden.  But I don't remember which.  (1) is true, but (3) is false. 

Hence (1) does not entail (3).   

 

(1)  (2):  If I could have sung or danced, and I couldnt' have sung, then I could have 

danced. 

So: (1)  (2). 

 

 

 

We get the pattern:        

 

 (1)  (2)  SOME 

         

       (3) 

          

              (4) 
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(1) I had to sing or dance.    (1) □ (SING(I)  DANCE(I)) 

(2) I had to sing or I had to dance.    (2) □ SING(I)  □ DANCE(I)  

(3) I had to sing and I had to dance.   (3) □ SING(I)  □ DANCE(I) 

(4) I had to sing and dance.    (4) □ (SING(I)  DANCE(I)) 

 

(3)  (2), (2) doesn't entail (3). 

 

Clearly (3)  (4): 

If I had to sing and dance, I had to sing. 

If I had to sing and I had to dance, I had to do both. 

 

(2)  (1) 

If I had to sing, I had to sing or dance, etc. 

But (1) does not entail (2). 

The club membership prescribes that each member chooses to sing a song or dance a 

dance, but there is no prescription that it has to be a song, nor that it has to be a dance. 

(1) is true, (2) is false. 

 

 

cf. 

(16)  a. The coin had to come down heads or tails. 

 b. The coin had to come down heads or the coin had to come down tails. 

 

(16a) expresses that the coin has to land on one of its sides. 

(16b) expresses that the coin is tampered with (or being influenced). 

Clearly, (16a) does not entail (16b). 

 

We get the pattern: 

 

       (1)   EVERY 

         

       (2) 

         

 (3)  (4) 
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We conclude:   Modals are quantifiers. 

   □ is a universal quantifier. 

   ◊ is an existential quantifier. 

 

But if □ and ◊ are quantifiers, there got to be things that they quantify over. 

We call them possibilities. 

Hence there is evidence for quantification over possibilities in natural language. 

 

Terminology:  possibilities = alternatives = alternative situations =  

   possible situations = possible worlds.   

 

I will use the latter terminology, althought sometimes we think of worlds, sometimes 

of world-times, sometimes just of times, sometimes of world-time-contexts. 

Montague call them with a neutral term indices.   

We can also call them parameters of variation. 

 

Idea: □φ is true iff φ is true in every possible world. 

 ◊φ is true iff φ is true in some possible world. 

 

 

Gottfried Wilhelm Leibniz introduced the idea of possible worlds in the context of a 

philosophic study of the notion of necessity in the 17th century. 

 

Rudolf Carnap revived the idea in Meaning and Necessity 1947, analyzing necessity 

as truth in all models (treating models as possible situations). 

 

But, C. I. Lewis had started the study of modal logic in 1912, and Lewis introduced 

different modal systems, in which necessity and possibility had different properties.  

This could not be dealt with in Carnap’s analysis, it only deals with logical necessity. 

 

By the mid 1950s various logicians were playing with similar ideas to resolve these 

problems and provide a Tarski style semantics for the modal logics of C. I. Lewis. 

I mention Jaakko Hintikka, Richard Montague, Stig Kanger, Evert Beth. 

 

But the person who solved the problems systematically and provided provably correct 

and complete semantics for the different modal systems, and for intuitionistic logic as 

well was a teenager:  Saul Kripke.   

(Classical papers, the first published when he was 19: 

A Completeness Theorem in Modal Logic 1959 

Semantical Considerations on Modal Logic 1963 

Semantical analysis of Intuitionistic Logic 1963) 

 

Possible world semantics 
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Possible world semantics explains intensionality and de dicto-de re ambiguities. 

 

-Intensionality. 

 

We evaluate John walks in a situation (= assign a truth value relative to a world). 

 

The extension (truth value) of John walks varies, depending on which possible 

situation (world) we are looking at. 

 

The intension of John walks is the pattern of variation of the extension of John 

walks across situations (worlds). 

 

The intension of John walks specifies for each possible situation what the truth value 

of John walks is in that situation.  This is a function from worlds to truth values. 

 

An extensional context is a context which is only sensitive to the extension of what 

fills the context: 

 

Example: negation:  (...) 

The truth value of (φ) in possible world w depends only on the truth value of  φ in 

w. 

 

An intensional context is a context which is sensitive to the intension of what fills 

the context, the pattern of variation of the extension of what fills the context across 

possible worlds. 

 

The modal operators □ and ◊ describe properties of the pattern of variation of the 

extension across possible worlds. 

(Just like x and x describe properties of the pattern of variation of the extension 

across resettings of the value of x in the assignment function) 

 

Thus, to determine the truth value of □φ and ◊φ in world w, it is not sufficient to 

know the truth value of φ in w; we need to know the truth value of φ in other worlds. 

 

 

 

If α and β have the same extension in world w, that doesn't guarantee that they have 

the same extension in every other world. 

 

This means that , while φ(α) and φ[β/α] have the same truth value in world w, they 

may well have different truth values in other worlds. 

 

Consequently, the truth values of □φ(α) and □φ[β/α] in world w may be different 

(the same for ◊φ(α) and ◊φ[β/α]).   

 

Consequently, □ and ◊ are intensional contexts. 
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-de dicto-de re ambiguities. 

 

□ and ◊ are quantifiers over possible worlds. As quantifiers, we expect the same kind 

of scope interactions we find for normal quantifiers. 

 

(10) Every suspect may be innocent. 

 a. De dicto:  ◊x[SUSPECT(x) → INNOCENT(x)] 

There is a possible situation where all of the suspects are innocent. 

 

 b. De re: x[SUSPECT(x) → ◊INNOCENT(x)] 

 For each suspect, there is a possible situation where that suspect is innocent. 

 

Thus, de dicto-de re ambiguities with modals reduce to scope ambiguities. 
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IV. VARIABILITY AND CONTEXT DEPENDENCY OF MODALS 

 

(1) I could have married you, but now I can't anymore. 

(2) Before they changed the law, I had to get a visa, but after, I could come without a  

      visa. 

 

Observation:  what is possible varies with time. 

 

 

 

(3) I am not able to play the saxophone. 

 

(3) is context dependent: the nature of the modality depends on the context. 

 

(3a) Skill. 

        In view of the fact that I never learned how to play, I am not able to play the  

        saxophone. 

 

(3b) Opportunity. 

        In view of the fact that my instrument was put on a plane to Ipamena, I am not  

        able to play the saxophone. 

 

(3c) Disablement. 

        In view of the fact that my fingers are frozen, I am not able to play the  

        saxophone. 

 

(3d) Limitation. 

        In view of the fact that it is 3.00 am, and my neighbour is a light-sleeping,  

        irritable heavy-weight, I am not able to play the saxophone. 

etc. 

 

(3) can have a different truth value dependent on which modality is meant. 

 

Consequently, what is possible varies with the nature of the modality. 

 

Contradiction test: 

 (4) a. Can you play the saxophone? 

       b. I can and I can't. 

                  c. In view of A I can, in view of B I can't. 

 

(4b) need not be a contradiction, because it can be resolved as (4c). 

 

Note: 

 

(5) a.   I play, even though I am not able to (play). 

      b. #I lift the fridge, even though I am not able to (lift the fridge). 

 

(5a) involves different senses of play.  This is shown by the infelicity of (5b). 
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Epistemic modality:  In view of what we know and don't know. 

Deontic modality:      In view of what is commanded and allowed. 

Ability modality:  (also called dynamic modality) 

                                    In view of our capacities and limitations. 

may, must 

 

(6) a. I may have told John this. 

      b. I must have told John this. 

 

John may be in Amsterdam right now. 

As far as I know, he may be anywhere 

 

Epistemic modality: natural 

 

(7) a. You may walk on the grass. 

      b. You must stay on the sidewalk. 

 

Deontic modality: easily possible 

 

(8) a. You may play the clarinet. 

      b. You must play the clarinet. 

 

Ability modality: impossible 

 

(8a) does not mean that you have the ability, capacity to play the clarinet 

 

 

 Epistemic Deontic Ability 

may, must   # 
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can, has to 

 

(9) a. I can tell you that you're gonna have a problem. 

      b. I can't tell you who did it (because I don't know) 

      c. John can’t be the murderer 

 

Epistemic modality: easily possible 

 

(10) a. You can take a cookie. 

        b. You can't take a chocolate. 

 

Deontic modality: natural 

 

(11) a. I can lift a refrigerator. 

        b. I can't lift a washing machine. 

 

Ability modality: also possible 

 

 

 

 Epistemic Deontic Ability 

can, must   # 

can, has to    
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be able to 

 

(12) a. I am not able to tell you who is the murderer, because I don't know. 

        b. I am not able to play the clarinet, because there is a law against it. 

        c. He is able to be anywhere. 

 

be able to can only have an epistemic or deontic effect indirectly: in so far as lack of 

knowledge or a prescription limits opportunity. 

 

(12') a. ✓Because I am not able to get down the stairs, I have to stay at home .  

 Ability 

        b. ?Because I am not able to get down the stairs, I must stay at home. 

  Not clear that this is ability. 

 

Epistemic modality: impossible 

Deontic modality: impossible 

Ability modality: natural. 

 

 

 Epistemic Deontic Ability 

can, must   # 

can, has to    

be able to #? #?  
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To show this in a different way, compare be able to with can. 

 

(13)  Everybody can be the lucky winner. 

 a. x[ ◊ WINNER(x) ] 

 b. ◊ x[ WINNER(x) ] 

 

Reading (13a) allows epistemic, deontic or ability interpretations. 

Reading (13b) does not allow an ability interpretation. 

We can paraphrase this reading of (13a) as (13c): 

  

(13) c. It can turn out to be the case that everybody is the lucky winner. 

  

and (13c) does not have an ability interpretation. 

 

 

(14) Everybody is able to be the lucky winner.  

 a. x[ ◊ WINNER(x) ] 

 b. ◊ x[ WINNER(x) ] Impossible. 

 

Reading (14a) does not allow an epistemic interpretation. 

Reading (14b) is impossible, as can be seen in the paraphrase in (14c): 

 

(14) c.  #It is able to be the case that everybody is the lucky winner. 

 

Explanation:   

  

Ability modality is subject dependent: ◊x 

 Epistemic modality is not subject dependent: ◊ 

 

be able to expresses subject dependent modality. 

can can express subject dependent or subject independent modality. 

 

Consequence: 

 The modal can scope over the subject iff the modal is not subject dependent. 

 

Reason:  variable x in ◊x would be free: 

 #    ◊x x[WINNER(x)]  
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So what we get is: 

 

(13) Everybody can be the lucky winner. 

 a1. x[ ◊ WINNER(x) ] 

 a2. x[ ◊x WINNER(x) ] 

 

 b1. ◊ x[ WINNER(x) ] 

 b2.  # ◊x x[WINNER(x)] 

 

The (a) interpretation allows an episitemic interpretation (by a1) and an ability 

interpretation (by a2). 

 

The (b) interpretation allows an epistemic interpretation, but not an ability 

interpretation. 

 

(14) Everybody is able to be the lucky winner.  

 x[ ◊x WINNER(x) ] 

 

(14) only allows a narrow scope ability interpretation. 

 

 

 

 

One more type of modality: 

 

Circumstantial modality:  in view of the circumstances. 

 

(20) (In view of the laws of physics), the ball that I throw up must come back to earth. 

 

Conclusion: which possible worlds restrict the modal quantifier varies with time and  

                     the nature of the modality. 
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Different interpretations of the modals have different entailment patterns. 

 

Ability. 

 

(15) a. (In view of my lack of musical education), I am not able to play the bassoon. 

entails 

        b. I don't play the bassoon.  

 

(15a): ◊ PLAY(I) = □PLAY(I) 

(15b): PLAY(I) 

Hence: □PLAY(I)  PLAY(I) 

 

Ability: □φ  φ 

 

 

 

 

Deontic. 

 

(16) a. (In view of the law), you can't walk on the grass. 

does not entail 

        b. You don't walk on the grass.  

 

(16a): ◊ WALK(YOU) = □WALK(YOU) 

(16b): WALK(YOU) 

Hence: □WALK(YOU) does not entail WALK(YOU) 

 

Deontic: □φ does not entail φ 

 

 

 

 

Epistemic. 

 

(17) a. (In view of the argument Hercule Poirot made), Bill must be the murderer. 

        b. Bill is the murderer. 

(17a) □ MURDERER(BILL) 

(17b)  MURDERER(BILL) 

If anything, (17b) entails (17a): (17b) is a stronger statement. 

 

Epistemic:(?) φ  □φ 
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Direct and indirect evidence: 

 

I know my digestive system by introspection (direct),  

yours only by external clues (indirect) 

 

(18) a.  I am hungry.  Natural 

        b. You are hungry. Impolite 

(19) a. I must be hungry. As if I deduce from external clues 

        b. You must be hungry. Natural 

  

The statement without the modal expresses direct epistemic evidence, the statement 

with the modal expresses indirect epistemic evidence. 

Since direct evidence is stronger than indirect evidence, we get the effect in (17). 
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V. MODAL BASES AS ACCESSIBILITY RELATIONS (Kripke models) 

 

Conclusions so far: 

 

1. We associate with natural language modals quantifiers over possible worlds. 

 

2. For each natural language modal it is lexically determined what the force of that 

quantifier is: 

 

Modal Force: can, could, may, be able to, possibly are  

                        existential quantifiers over possible worlds. 

 

  must, has to, had to, neccesarily are 

  universal quantifiers over possible worlds. 

 

3. The quantification is contextually restricted: 

what the relevant alternatives are that we quantify over varies with time and depends 

on the nature of the modality.   

The latter we call the modal base (Kratzer 1983, the Notional Category of Modality): 

The context makes available a modal base which restricts the quantification. 

 

4. Modals vary in what modal bases are available for them: 

i.e. must, may:  epistemic, deontic modal base, not ability modal base. 

      be able to:  not epistemic, deontic modal base, subject dependent ability modal  

      base.     

etc. 

 

What is a modal base? 

A modal base M determines for each world (and moment of time) the set of 

alternative worlds that are relevant for the modal quantification. 
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An epistemic modal base determines what is known, what isn't known, what is 

compatible with our knowledge, and what isn't in a situation. 

 

Idea:  The epistemic modal base associates with a situation the set of all worlds  

compatible with what we know. 

 

     W 

 

  

 

 

 

W: the set of all worlds. 

K: the set of worlds compatible with what we know. 

 

 

φ follows from what we know iff φ is true in all worlds compatible with what  

we know. 

 

     W 

 

  

 

 

 

W: the set of all worlds. 

K: the set of all worlds compatible with what we know. 

φ: the set of  all worlds where φ is true. 

 

φ is compatible with what we know iff φ is true in some world compatible  

with what we know. 

 

     W 

 

  

 

 

 

W: the set of all worlds. 

K: the set of all worlds compatible with what we know. 

φ: the set of  all worlds where φ is true. 

 

 

 

 

 

 

 

 

 

     

   K 

     

    φ      φ       K   

   
K 

     

    φ      φ           K
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Hence φ is incompatible with what we know iff φ is false in all worlds  

compatible with what we know. 

 

 

     W 

 

  

 

 

 

W: the set of all worlds. 

K: the set of all worlds compatible with what we know. 

φ: the set of  all worlds where φ is true. 

 

We don't know whether φ iff both φ and φ are compatible with what we know, and 

this means that in some of the worlds compatible with what we know φ is true, in the 

others φ is true. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

    φ      φ           K
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A deontic modal base determines what is commanded, what is allowed in a situation. 

 

Idea:  The deontic modal base associates with a situation the set of all worlds  

compatible with what is commanded, the (contextually given) 'law'. 

 

φ follows from the law iff φ is true in all worlds compatible with the law. 

φ is compatible with the law iff φ is true in some world compatible with the law. 

Hence φ is incompatible with the law iff φ is false in all worlds compatible with the 

law. 

 

Note: the real world is not necessarily compatible with the law, in fact, in most cases 

it isn't.  This means that the set of worlds compatible with the law will not usually 

include the real world.   

 

And this means that if φ is true in all worlds compatible with the law, it doesn't 

follow that φ is true in the real world. 

(This is going to mean that, on the deontic interpretation, □φ does not entail φ). 
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In general:  

 

A modal base M associates with every world  w a set of worlds, Mw,  

which is the set of all worlds compatible with the content of M in w. 

 

Equivalently: 

 

 A modal base M is a relation between possible worlds. 

 

 M(w,v) means:  v  Mw 

 

 We call such relations between possible worlds accessibility relations.  

 (Kripke 1959). 

 

 M(w,v) means: world v is accessible from world w, according to the content  

of M. 

 

If M is, say, a deontic modal base, then M(w,v) means: 

 v is deontically accessible from w 

 

v is deontically accessible from w iff v is one of the possible situations that has to be 

considered when we are asking what is forbidden and what is allowed. 

 

The set of all deontically accessible worlds in w, is the set of all worlds, relevant for 

w, where no law that is commanded in w by M is broken.   

 

This means, for example, that if it is a law in w that you are not allowed to walk on 

the grass, then in all worlds, deontically accessible from w, nobody walks on the 

grass. 

 

Similarly, if M is epistemic accessibility, then M(w,v) means:   

in v nothing happens that we know in w is not the case. 

 

If Md is an ability modal base for d, then Md(w,v) means: 

in v nothing happens that is beyond the ability of d in w. 

 

Note, we can, in context, distinguish different subkinds of modal bases.  

Also modal bases may overlap.  

cf: 

 

(20) a. (In view of the laws of physics), the ball that I throw up must come back to  

            earth. 

        Circumstantial modal base.  

        b.(In view of what we know about the laws of physics), the ball that I throw up  

           must come back to earth. 

        Circumstantial epistemic modal base. 
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Also, modal bases can have an ordering relation on them (Kratzer 1983): 

 

(21) a. You must give to the poor. 

 

        Modal base: deontic. 

        In every deontically accessible world you give to the poor. 

        b. You ought to give to the poor. 

 

        Modal base: deontic. 

        Ordering relation: The ideal behaviour of a virtuous person in an ideal situation. 

        Not: In every deontically accessible world you give to the poor. 

(Most religions have that much common sense.) 

 

        But: In every deontically accessible world which is an ethically ideal world 

                you give to the poor. 

 

In every deontically accessible situation in which the yoke of financial pressures of 

the real world is lifted and you have high ethical standards, you give to the poor.   

 

In sum:  

We associate with a modal a modal force and, in context, a modal base (accessibility 

relation) that can be expressed by that modal. 

The modal base restricts the quantification of the modal force to quantification over 

worlds that are accessible, according to the modal base. 
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VI. L6, THE LANGUAGE OF MODAL PREDICATE LOGIC (Kripke 1959) 

 

The language of modal predicate logic, L6 is our language L4 with two new syntactic 

clauses: 

 

 (1) If φ  FORM, then □φ  FORM 

 (2) If φ  FORM, then ◊φ  FORM  

 

This gives us formulas of the form: 

 x[P(x)  ◊R(x,x)] 

 □x[P(x) → ◊R(x,x)] 

 

To keep things simple, we will only discuss the case where there is one modal base 

available. 

 

We specify the semantics for L6. 

 

Models. 

 

A model for L6 is a structure: M = <WM, RM, DM, FM> where: 

 

 1. WM is a non-empty set, the set of all possible worlds. 

 

 2. RM  WM  WM.  RM, the accessibility relation, is a relation between  

                possible worlds. The modal base. 

 

 3. DM is a non-empty set, the domain of possible individuals. 

 

 4. FM is the interpretation function for the lexical items. 

 

FM assigns to every lexical item an extension in every world (since in this language, 

extensions of expressions vary from world to world). 

 

This means that FM is a function from lexical items and worlds to extensions. 

 

 a. FM: CON  WM → DM 

     for every individual constant c  CON and every world w  WM: 

      FM(c,w)  DM. 

 

 Condition: Rigidity (discussed later): 

 for every c  CON, and every w,v  WM: FM(c,w) = FM(c,v) 

 

Names do not vary their extension from world to world (unlike, as we will see definite 

noun phrases like the president, σ(PRESIDENT)). 

 

 b. for every n>0:  FM: PREDn  WM → pow(Dn) 

                for every world w  WM and every predicate P  PREDn:  FM(P)  Dn. 
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Thus, a predicate like WALK denotes in each world w a set of individuals: the 

individuals that walk in w. 

Obviously, in different world, different individuals walk, so predicates do vary their 

extension from world to world. 

 

    c. FM: {}  WM → ({0,1} → {0,1}) 

 

        for every w  WM: FM(,w) =     0 → 1 

                                                   1 → 0 

 

       FM: {,,→}  WM → {0,1}  {0,1} → {0,1} 

 

      d. for every w  WM: FM(,w) =    <1,1> → 1 

                                                   <1,0> → 0 

                                                   <0,1> → 0 

                                                   <0,0> → 0  

 

      e. for every w  WM: FM(,w) =    <1,1> → 1 

                                                   <1,0> → 1 

                                                   <0,1> → 1 

                                                   <0,0> → 0  

 

      f. for every w  WM: FM(→,w) =   <1,1> → 1 

                                                   <1,0> → 0 

                                                   <0,1> → 1 

                                                   <0,0> → 1  

 

We draw pictures of the accessibility relation between worlds in the same way as 

usual for two place relations: 

 

             W 

 

 

 

 

 

 

 

 

 

 

This indicates:  R = {<w1,w2>, <w1,w4>, <w2,w1>, <w4,w4>} 

 

Thus, the set of worlds accessible from w1 is {w2,w4} 

          the set of worlds accessible from w2 is {w1} 

          the set of worlds accessible from w3 is Ø 

          the set of worlds accessible from w4 is {w4} 

 

 

 

                     o w1 

 

 

    o w4 

o w2                  o w3 
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Assignment functions: 

 As before an assignment function for L6 on M if a function g: VAR → DM 

 

Note: assignment functions are not sensitive to possible worlds: variables get 

assigned a value independent of possible worlds (this is important). 

 

 

Compositional semantics. 

For every L6 model M = <WM,RM,DM,FM>, every world w  WM, and  

every assignment g for L6 on M,  

we define for every L6 expression α:  ⟦α⟧M,g 

 

 ⟦α⟧M,w,g, the extension of expression α in model M in world w relative to  

    assignment g. 

 

 0. if α  LEX, then  

    ⟦α⟧M,w,g = FM(α,w) 

 

     If x   VAR, then 

     ⟦x⟧M,w,g = g(x) 

 

 1. If α1,...αn  TERM and P  PREDn, then 

     ⟦P(α1,...,αn)⟧M,w,g = 1 iff < ⟦α1⟧M,w,g,..., ⟦αn⟧M,w,g >  ⟦P⟧M,w,g; 0 otherwise. 

 

     If α1, α2  TERM, then 

     ⟦(α1=α2)⟧M,w,g = 1 iff ⟦α1⟧M,w,g = ⟦α2⟧M,w,g; 0 otherwise. 

 

 2. If φ,ψ  FORM then: 

     ⟦φ⟧M,w,g = ⟦⟧M,w,g ( ⟦φ⟧M,w,g ) 

 

     ⟦(φ  ψ)⟧M,w,g = ⟦⟧M,w,g ( <⟦φ⟧M,w,g, ⟦ψ⟧M,w,g> ) 

 

     ⟦(φ  ψ)⟧M,w,g = ⟦⟧M,w,g ( <⟦φ⟧M,w,g, ⟦ψ⟧M,w,g> ) 

 

     ⟦(φ → ψ)⟧M,w,g = ⟦→⟧M,w,g ( <⟦φ⟧M,w,g, ⟦ψ⟧M,w,g> ) 

 

 3. If x  VAR and φ  FORM then: 

    ⟦xφ⟧M,w,g = 1 iff for every d  DM: ⟦φ⟧M,w,gx
d =1; 0 otherwise 

 

     ⟦xφ⟧M,w,g = 1 iff for some d  DM: ⟦φ⟧M,w,gx
d =1; 0 otherwise 

 

 4. ⟦ □φ ⟧M,w,g = 1 iff for every v  WM: if R(w,v) then ⟦φ⟧M,v,g = 1;  

0 otherwise 

     

     ⟦ ◊φ ⟧M,w,g = 1 iff for some v  WM: R(w,v) and  ⟦φ⟧M,v,g = 1;  

0 otherwise 
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Truth in world w. 

Let φ be an L6 sentence. 

 

 ⟦φ⟧M,w = 1 iff for every g: ⟦φ⟧M,w,g = 1 

 ⟦φ⟧M,w = 0 iff for every g: ⟦φ⟧M,w,g = 0 

 

Entailment for L6. 

 

 φ entails ψ, φ  ψ iff for every model M for L6, for every world w  WM: 

                                  if ⟦φ⟧M,w = 1 then ⟦ψ⟧M,w = 1 

 

 φ  ψ iff φ  ψ and ψ  φ  

 

So φ entails ψ iff for every model and world where φ is true, ψ is true. 

 

 

Truth in a model: 

 

 ⟦φ⟧M = 1 iff for every world w  WM: ⟦φ⟧M,w = 1 
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Equivalent definition of entailment: 

 

 The proposition expressed by : 

 

 ⟦⟧M  =  {w  WM: ⟦⟧M,w = 1} 

 

 The set of all worlds where  is true. 

 

 

 φ entails ψ, φ  ψ iff for every model M for L6,  ⟦φ⟧M  ⟦ψ⟧M 

 

 

Entailment = subset on the set of sets of possible worlds 

 

More connections: 

 

 ⟦(  )⟧M = ⟦⟧M  ⟦⟧M 

  

 ⟦(  )⟧M  = {w  WM: ⟦(  )⟧M,w = 1} 

   = {w  WM: ⟦⟧M,w = 1 and ⟦⟧M,w = 1} 

   =  {w  WM: ⟦⟧M,w = 1} {w  WM: ⟦⟧M,w = 1} 

   = ⟦⟧M  ⟦⟧M 

 

Conjunction = intersection on the set of of sets of possible worlds 

 

 

 ⟦(  )⟧M = ⟦⟧M  ⟦⟧M 

  

 ⟦(  )⟧M  = {w  WM: ⟦(  )⟧M,w = 1} 

   = {w  WM: ⟦⟧M,w = 1 or ⟦⟧M,w = 1} 

   =  {w  WM: ⟦⟧M,w = 1} {w  WM: ⟦⟧M,w = 1} 

   = ⟦⟧M  ⟦⟧M 

 

Disjunction = union on the set of of sets of possible worlds 

 

 

 ⟦⟧M= WM ¡ ⟦⟧M 

  

 ⟦⟧M  =  {w  WM: ⟦⟧M,w = 1} 

   = {w  WM: ⟦⟧M,w = 0} 

   = WM  ¡  {w  WM: ⟦⟧M,w = 1} 

   =  WM ¡ ⟦⟧M 

 

Negation = complementation on the set of sets of possible worlds 
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The semantics makes the following facts true: 

 

   □φ  ◊φ    □φ  ◊φ 

 □φ  ◊φ  □φ  ◊φ  

 

 

 ◊(φ  ψ)  ◊φ  ◊ψ 

               

◊φ  ◊ψ 

         

◊(φ  ψ) 

 

 

□(φ  ψ) 

         

□φ  □ψ 

         

 □(φ  ψ)  □φ  □ψ 

 

 

The dreamer, the fatalist, and the dogmatic. 

 

Let φ be any formula that is not a contradiction or a tautology and assume that φ is 

true in some world in WM and false in some other world in WM 

 

w0   w1   

      

   w2   

      

The dreamer lives in world w0: in w0 everything is possible, nothing is necessary. 

Since every world is accessible from w0: ◇φ is true in w0 and □φ is false in w0. 

 

The fatalist lives in world w1: in w1 only what is actual is possible and  

                                                                         what is actual (and only that) is necessary.  

Since only w1 is accessible from w1: ◇φ and □φ are true in w1 iff φ is true in w1 

Why is the person in w1 a fatalist?  Because for the fatalist there is no hope. 

 

The dogmatic lives in world w2: in w2 nothing is possible and everything is necessary. 

Since no world is accesible from w2 ◇φ is false in w2 and, trivially, □φ is true in w2. 

 

wrt to tautologies and contradictions: 

Contradictions are never possible, tautologies are always necessary. 

All tautologies are possible in worlds w0 and w1, but no tautologogy is possible in world w2. 

No contradiction is necessary in world w0 and w1, every contradiction is, trivially, 

necessary in world w2. 
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We add the definite article: 

 

 

 If P  PRED1, then σ(P)  TERM 

 

Semantics: 

   d  if ⟦P⟧M,g,w = {d}  

 ⟦σ(P)⟧M,g,w = 

   undefined otherwise 

 

 

 

Rigidity of names versus non rigidity of definite terms 

 

(1) a. If Kennedy had been a republican, Buck would have been made head of the CIA. 

      b. If the president had been a republican, Buck would have been made head of the 

          CIA. 

 

(1b) is ambiguous in a way that (1a) is not. 

 

 

Reading of (1a): Change the world minimally so as to make Kennedy a republican.  

In that world Buck is made head of the CIA. 

 

(1b):  Reading 1:  the same as the reading of (1a):  Kennedy is the president, and we 

change the world minimally to make him republican, Buck becomes head of the CIA. 

 

(1b): Reading 2: Change the world minimally as to make the USA have a republican 

president (Nixon).  In that world, Buck is made head of the CIA. 

 

Crucial fact:  (1a) does not have the following reading: 

 

(1a): Non-existent reading 2: Change the world minimally as to make the name 

Kennedy denote a republican (say, Nixon).  In that world,  Buck is made head of the 

CIA.  

 

Since the name, individual constant,  Kennedy denotes the same individual in all 

possible worlds, you cannot derive the non-existent reading 2 for (1a). 

Since the definite the president denotes different individuals in different words, you 

can derive reading 2 for (1b).   

You can also derive reading 1 for (1b) by given the expression the president wide 

scope over the modal. 
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VII. EXAMPLES 

 

Example 1. 

Let PROUST, JOYCE  CON. 

 

Let AU stand for 'be author of Ulysses' 

Let AF stand for 'be author of Finnegans Wake' 

Let AR stand for 'be author of A la recherche du temps perdu' 

AU, AF, AR  PRED1 

 

 

MODEL M = <W,R,D,FM> where: 

 W = {w0,w1,w2,w3} 

 R = {<w0,w0>, <w0,w1>, <w0,w2>, <w0,w3>,  

                     <w1,w1>, <w2,w2>, <w3,w3> } 

 D = {p, j} 

 FM is specified in the following table: 

 

FM w0 w1 w2 w3 

PROUST p p p p 

JOYCE j j j j 

AR {p} {j} {p} {j} 

AU {j} {j} {p} {j} 

AF {j} {j} {j} Ø 

 

 

The accessibility relation is given as follows: 

 

 

  w1 

 

w0  w2 

 

  w3 

 

 

Of course we should add the three novels to the model and add a two place relation A 

for author of .  Then we write: σ(λx.A(x,Finnegans wake)) for σ(AF), the author 
of Finnegans Wake.   
But we assume that understood and just follow the above specifications of AR, 
AU and AF 
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The whole model can be schematically given as: 

 

 

       o w1 

                        Joyce  → À la recherche du temps perdu 

             Joyce  → Ulysses 

             Joyce  → Finnegans wake  

 

 

 

 

 

o w0       o w2 

 

Proust → À la recherche du temps perdu  Proust  → À la recherche du temps perdu 

Joyce  → Ulysses     Proust  → Ulysses 

Joyce  → Finnegans wake    Joyce   → Finnegans wake 

 

 

 

 

       o w3 

                         Joyce → À la recherche du temps perdu 

              Joyce  → Ulysses 

         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://fr.wikipedia.org/wiki/%C3%80_la_recherche_du_temps_perdu
https://fr.wikipedia.org/wiki/%C3%80_la_recherche_du_temps_perdu
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(1) a. Proust is the author of Ulysses. 

 b. (PROUST = σ(AU)) 

 

Truth conditions: 

 
⟦PROUST = σ(AU)⟧M,w,g = 1 iff 

 
⟦PROUST⟧M,w,g = ⟦σ(AU)⟧M,w,g iff 

 

FM(PROUST,w) = d, where {d} = ⟦AU⟧M,g,w iff 

 

FM(AU,w) = {FM(PROUST,w)} iff 

 

FM(AU,w) = {p} 

 

(since FM(PROUST,w) = p for every w  W) 

 

 

We see: 

 

FM w0 w1 w2 w43 

PROUST p p p p 

JOYCE j j j j 

AU {j} {j} {p} {j} 

AF {j} {j} {j} Ø 

AR {p} {j} {p} {j} 

 

FM(AU,w) = {p} 

 

 w0 w1 w2 w3 

PROUST = σ(AU) 0 0 1 0 
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(2)  a. The author of Ulysses is the author of Finnegans Wake.  

 b. (σ(AU) = σ(AF)) 

 

Truth conditions: 

 
⟦σ(AU) = σ(AF)⟧M,w,g = 1 iff  

 
⟦σ(AU)⟧M,w,g = ⟦σ(AF)⟧M,w,g iff 

 

for some d  D: ⟦AU⟧M,w,g = ⟦AF⟧M,w,g = {d} iff 

 

FM(AU,w) = FM(AF,w) and |FM(AU,w)|=1 

 

 

We see: 

 

FM w0 w1 w2 w3 

PROUST p p p p 

JOYCE j J j j 

AU {j} {j} {p} {j} 

AF {j} {j} {j} Ø 

AR {p} {j} {p} {j} 

 

FM(AU,w) = FM(AF,w) and |FM(AU,w)|=1 

 

 w0 w1 w2 w3 

σ(AU) = σ(AF) 1 1 0 0 

 

 

Note: σ(AU) = σ(AF) is false in w3, even though σ(AF) is not defined there.   

This follows from the semantics given for = (i.e. the '0 otherwise').  

We could change the semantics for formulas, so that it will come out as undefined 

instead.  But for our purposes here it is just as well that it comes out as false. 
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(3) a. Proust could have been the author of Ulysses. 

 b. ◊ (PROUST = σ(AU))  

 

Truth conditions: 

 
⟦◊(PROUST = σ(AU))⟧M,w,g = 1 iff 

 

for some v  W: R(w,v) and  ⟦PROUST = σ(AU)⟧M,v,g = 1 iff 

 

for some v  W: R(w,v) and FM(AU,v) = {p} 

 

We see: 

 

FM w0 w1 w2 w3 

PROUST p p p p 

JOYCE j j j j 

AU {j} {j} {p} {j} 

AF {j} {j} {j} Ø 

AR {p} {j} {p} {j} 

 

for some v  W: R(w,v) and FM(AU,v) = {p} 

 

  w1 

 

w0  w2 

 

  w3 

 

 w0 w1 w2 w3 

◊(PROUST=σ(AU)) 1 0 1 0 

true in w0 because w2 is accessibe, and there Proust wrote U  

true in w2 for the same reason. 

false in the others. 
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(4) a. Proust could have been the author of Finnegans Wake. 

 b. ◊(PROUST = σ(AF)) 

 

Truth conditions: 

 
⟦◊(PROUST = σ(AF))⟧M,w,g = 1 iff 

 

for some v  W: R(w,v) and  ⟦PROUST = σ(AF)⟧M,v,g = 1 iff 

 

for some v  W: R(w,v) and FM(AF,v) = {p} 

 

We see: 

 

FM w0 w1 w2 w43 

PROUST p p p p 

JOYCE j j j j 

AU {j} {j} {p} {j} 

AF {j} {j} {j} Ø 

AR {p} {j} {p} {j} 

 

for some v  W: R(w,v) and FM(AF,v) = {p} 

 

  w1 

 

w0  w2 

 

  w3 

 

 w0 w1 w2 w3 

◊(PROUST=σ(AF)) 0 0 0 0 

Proust did not write F in any world. 

 

 

This shows that substitution of expre ssions with the same extension is not valid in 

modal contexts: 

 

(3) b. ◊ (PROUST = σ(AU))  

(2) b.  (σ(AU) = σ(AF)) 

do not entail 

(4) b. ◊(PROUST=σ(AF)) 

 

This entailment would hold if for every model M and every world w  WM where 

(3b) and (2) are true, (4b) is true as well. 

 

But model M is a counterexample.  

 We find a world w0  W where (3b) and (2b) are true, but (4b) is false (check the 

tables).  Hence (3b) and (2b) do not entail (4b). 
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(5) a. Proust couldn't have been the author of Finnegans Wake. 

            b. ◊(PROUST = σ(AF)) 

 

 ◊(PROUST = σ(AF))  □(PROUST = σ(AF)) 

 

Truth conditions: 

⟦□(PROUST = σ(AF))⟧M,w,g = 1 iff  

 

for every v  W: if R(w,v) then ⟦(PROUST = σ(AF))⟧M,v,g = 1 iff 

 

for every v  W: if R(w,v) then ⟦PROUST = σ(AF)⟧M,v,g = 0 

 

Obviously: 

 

FM w0 w1 w2 w43 

PROUST p p p p 

JOYCE j j j j 

AU {j} {j} {p} {j} 

AF {j} {j} {j} Ø 

AR {p} {j} {p} {j} 

 

for every v  W: if R(w,v) then ⟦PROUST = σ(AF)⟧M,v,g = 0 

 

  w1 

 

w0  w2 

 

  w3 

 

 w0 w1 w2 w3 

□(PROUST=σ(AF)) 1 1 1 1 

 

(5b) is true in every world in W.  Hence (5b) is true on model M. 
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(6) a. Joyce is necessarily the author of Finnegans Wake. 

 

 b. □(JOYCE = σ(AF)) 

 

Truth conditions: 

 

⟦□(JOYCE = σ(AF))⟧M,w,g = 1 iff 

 

for every v  W: if R(w,v) then ⟦JOYCE=σ(AF)⟧M,w,g = 1 iff 

 

for every v  W: if R(w,v) then FM(FW,v) = {j} 

 

We see: 

 

FM w0 w1 w2 w3 

PROUST p p p p 

JOYCE j J j J 

AU {j} {j} {p} {j} 

AF {j} {j} {j} Ø 

AR {p} {j} {p} {j} 

 

 

 w0 w1 w2 w3 

□(JOYCE = σ(AF)) 0 1 1 0 

 

We see that it is not true on M that Joyce necessarily wrote Finnegans Wake,  

though it is true on M that nobody else could have written Finnegans Wake. 

 

(6) c. Somebody else could have written Finnegans wake instead of Joyce. 

          x[(x=JOYCE  ◊(x = (AF)] 

      d. Somebody else could have written Ulysses instead of Joyce. 

          x[(x=JOYCE  ◊(x = (AU)] 
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Example 2. 

 

Let FRED  CON, SWEDE  PRED1, MARRY  PRED2. 

 

Model M = <W,R,D,FM>, where: 

 W = {w0,w1,w2,v1,...,vn} 

 R = {<w0,w0>, <w0,w1>, <w2,w2>, <w2,v1>,...,<w2,vn>} 

 D = X  Y  {f,s,h}, where X = {sw1,...,swm} and Y = {d1,...,dn} 

 for every w  W: FM(FRED,w) = f 

 

The interpretations of the predicates SWEDE and MARRY are specified in the 

following table: 

 

FM w0 w1 w2 vi (for every i ≤ n) 

SWEDE X  {h} X X  {h} Y 

MARRY {<f,s>} {<f,h>} {<f,s>} {<f,di>} 

 

In a picture: 

 

 

 

o w0     o w1 

SWEDE → {sw1,...,swm,h}   SWEDE → {sw1,...,swm}   

MARRY → {<f,s>}    MARRY → {<f,h>} 

 

 

     o v1 SWEDE → {d1,...,dn} 

     .       MARRY → {<f,d1>} 

     . 

o w2     . 

     . 

    . 

SWEDE → {sw1,...,swm,h}     . 

MARRY → {<f,s>}   o vn SWEDE → {d1,...,dn} 

            MARRY → {<f,dn>} 

 

 

(7) Fred could have been married to a Swede. 

 a. x[SWEDE(x)  ◊MARRY(FRED,x)] 

 b. ◊x[SWEDE(x)  MARRY(FRED,x)] 

 

Let me tell you about Helga.  I told you we were contemplating marriage. 

What I didn't tell you (but what the model tells you), is that she wouldn't have married 

me without changing her nationality first.  She felt very strong about that. Or my 

mother did.  I don't remember.  (Just try to become Dutch and keep your 

nationality…) 
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Truth conditions: 

 

⟦x[SWEDE(x)  ◊MARRY(FRED,x)]⟧M,w,g = 1 iff  

 

for some d  FM(SWEDE,w) and  

for some v  W: (R(w,v) and ⟦MARRY(FRED,x)⟧M,v,gx
d=1 iff 

 

for some d  FM(SWEDE,w) for some v  W: R(w,v) and <f,d>  F(MARRY,v) 

 

-since h  FM(SWEDE,w0) , R(w0,w1) and <f,h>  F(MARRY,w1),  

(7a) is true in w0  

 

-since FM(SWEDE,w2)  FM(SWEDE,vi) = Ø,  

for every i≤n, there isn't a d  FM(SWEDE,w2) and a v ∈ W 

such that R(w2,v) and <f,d>  FM(MARRY,v).   

 

Hence (7a) is false in w2., 

 

Results: 

 w0 w2 

x[SWEDE(x)  ◊MARRY(FRED,x)] 1 0 

 

 
⟦◊x[SWEDE(x)  MARRY(FRED,x)]⟧M,w,g = 1 

 

iff for some v  W: R(w,v) and for some d  F(SWEDE,v): <f,d>  F(MARRY,v) 

 

-since <f,h>  FM(MARRY,w0) and h  FM(SWEDE,w1)  

there isn't a v such that <w0,v> and  

for some d: d  FM(SWEDE,v) and <f,d>  FM(MARRY,v). 

 

That is,:  R(w0,w0).    In w0, Helga is a Swede, but Fred is not married to her there. 

                R(w0,w1).   In w1, Fred is married to Helga, but she isn't a Swede there. 

Hence (7b) is false in w0  

 

Any of the worlds vi is a world such that <w2,vi> and  

for some d  F(SWEDE,vi) <f,d>   F(MARRY,vi)  (namely, di).   

Hence, clearly, (7b) is true in w2. 

 

 

 w0 w2 

◊x[SWEDE(x) MARRY(FRED,x)] 0 1 
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This shows that: 

 

x[SWEDE(x)  ◊MARRY(FRED,x)] does not entail 

◊x[SWEDE(x) MARRY(FRED,x)] 

 

(w0 is a counterexample) 

 

◊x[SWEDE(x) MARRY(FRED,x)] does not entail 

x[SWEDE(x)  ◊MARRY(FRED,x)] 

 

(w2 is a counterexample) 

 

The readings are logically independent. 

 

Note that in w2 it is not true that I had to be married to a Swede:   

even though there are many worlds accessible frow w2 where I am married to a 

Swede, there is one where I am not, namely w2 itself. 

 

I chose the set of Swedes in the vi worlds to be a set different from the Swedes in w2 

(the actual Swedes in w2).   

This was to fit the part of the story that my Swedish fit was not based on an 

acquaintance with any Swedes   

(better would have been to let the set of Swedes in the accessible worlds vary wildly). 

 

Also, I chose a different Swede in each alternative.   

This models the unspecificity of the modal facts:   

My Swedish fit was strong enough, and I was at the time flippant enough that I could 

have found myself married to anyone of them. 
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VIII. QUANTIFICATION OVER POSSIBLE INDIVIDUALS 

 

You may have noticed that the domain of individuals was chosen to be a domain of 

possible individuals, and that quantification is over possible individuals. 

This means that x[BOY(x)  SING(x)] is true in world w iff some possible 

individual is a boy in w and sings in w.   

But this doesn't actually tell you that that boy should exist in w. 

Let us make the connection with existence explicit. 

 

We add a predicate EXIST  PRED1.  

We add to the model a function EM: WM → powDM. 

E maps every world w  W onto EM(w), which we understand as the set of  

possible individuals existing in w. 

 

 We interpret: FM(EXIST,w) = EM(w) 

 

We could now change the semantics of the quantifiers so that quantification in a 

world is always over objects existing in that world: 

 

 ⟦xφ⟧M,w,g = 1 iff for every d  EM(w): ⟦φ⟧M,w,gx
d = 1 

 

 ⟦xφ⟧M,w,g = 1 iff for some d  EM(w):  vφ⟧M,w,gx
d = 1 

 

But we are not going to do that:  

we will continue to assume that quantification is over possible objects. 

But then we can formulate our problem:   

 

 Problem: 

 (1) Some boy kissed Mary 

 (2) Some boy exists. 

 (3) Mary exists. 

 

 The problem is that (1) should entail (2) and (3), but so far it doesn't. 

 

Instead of building existence into the quantification,  

I assume that it follows from the lexical meaning of the predicates: 

 

 Lexical postulates. 

 For every world w  W: FM(BOY,w)  EM(w) 

 For every world w  W: dom(FM(KISS,w)  EM(w) 

          ran(FM(KISS,w)  EM(w) 

 

With these postulates, (1)  (2) and (1)  (3). 

 

One advantage of  putting the existence claim into the lexical meanings of the 

predicates is that in this way you can distinguish different predicates: 
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 Lexical postulates. 

 For every world w  W: dom(FM(RESEMBLE,w)  EM(w) 

 For every world w  W: dom(FM(WORSHIP,w)  EM(w) 

          

  (4) a. Fred resembles Leopold Bloom. 

       b. Fred worships Anna Livia Plurabella. 

 

Side remark:   

Resemble shows temporal asymmetry (Kratzer) 

 

(4') a. ✓I look like my ancester who lived under Napoleon. 

      b. ?My ancester who lived under Napolean looked like me.  

End of side remark 

 

I haven't put an existence requirement on the range of the interpretations of resemble 

and worship, and that means that if I claim that a resembles b or a worships b, it does  

follow that a exists, but it doesn't follow that b exists. 

 

We see that we need to distinguish different types of predicates, when we're 

concerned with existence claims.  This means that we need these kinds of lexical 

postulates any way.  If so, there is no need to put them as constraints on the 

quantifiers as well. 

 

But what about (5): 

 

 (5) Pegasus is a winged horse. 

 

Is this statement true in world w0, the real world? 

Probably not.  But there is a sense in which it is true. 

 

Let's sketch a little analysis of fictional discourse.  [More sophisticated analysis: 

Terrence Parsons – Non-existent objects] 

I assume that the sense in which (5) is true is the following. 

On the 'true' use, (5) contains an implicit operator: 'in the story': 

 

 (6) (In the story), Pegasus is a winged horse. 

 

How should we analyze this operator? 

I assume that in the model the story exists in the real world w0, and I assume that we 

associate with the real world w0  a set:  

 

𝐒𝐰𝟎
 the set of all worlds compatible with the story in w0. 

 

In fact, I will assume that, we can associate with every world w such a set Sw. 

 

Now we add to the language an operator S (for 'in the story')  with the following 

syntax and semantics: 

 

  If φ  FORM, then S(φ)  FORM 

 ⟦S(φ)⟧M,w,g = 1 iff for every v  Sw: ⟦φ⟧M,v,g = 1 



 45 

Let WH be the predicate winged horse, and assume that WH satisfies the same 

postulate as BOY: 

 

 Lexical postulate. 

 For every world w  W: FM(WH,w)  EM(w) 

 

In the real world w0, FM(WH,w0) = Ø 

 

Consequently: 

 

 ⟦WH(PEGASUS)⟧M,w0,g  = 0, because FM(PEGASUS)  FM(WH,w0) 

 

But: 

 ⟦S(WH(PEGASUS))⟧M,w0,g = 1 iff 

 for every v  Sw0
: FM(PEGASUS,v)  FM(WH,v) 

 

Since the story distinctly specifies the winged-horsedness of Pegasus, we assume that 

indeed, only worlds where Pegasus is in the extension of WH are in Sw0
. 

Consequently, ⟦S(WH(PEGASUS))⟧M,w0,g = 1. 

 

Note that it is important to realize that, while we talk about 'the world according to the 

story', there is no such thing:  there are only the worlds compatible with the story. 

This is because the story leaves many things open that a world does not leave open. 

When the Duke de Guermantes makes a scene about the color of his wife's shoes, the 

story doesn't tell you, for instance, what size those shoes were: 

This means that in some worlds compatible with the story, the Dutchess wore size 36, 

in others 37, etc. 

 

We can show now that the following entailment relations hold: 

 

(7) a. Pegasus is a winged horse. 

     WH(PEGASUS) 

entails 

 b. Pegasus exists. 

     EXIST(PEGASUS) 

 

(8) a. (In the story) Pegasus is a winged horse. 

      S(WH(PEGASUS)) 

does not entail 

 b. Pegasus exists. 

     EXIST(PEGASUS) 

 

(9) a. (In the story) Pegasus is a winged horse. 

      S(WH(PEGASUS)) 

entails 

 b.(In the story) Pegasus exists. 

    S(EXIST(PEGASUS)) 

 

 



 46 

IX. PROPOSITIONS AND PROPOSITIONAL ATTITUDE VERBS 

 

For the use of the examples below, we add a new syntactic category of propositions, 

TERMprop And we add a category of relations between individuals and propositions : 

PRED<ind,prop>
2 : 

 

  PRED<ind,prop>
2 = {BELIEVE, CLAIM} 

 If t  TERM and p  TERMprop and R  : ,PRED<ind,prop>
2  then R(t,p)  FORM 

 ⟦R(t,p)⟧M,w,g = 1 iff <⟦t⟧M,w,g, ⟦p⟧M,w,g>  FM(R) 

 

We form propositions from formulas by a proposition forming operation  (“up”) 

 

 If   FORM, then   TERMprop 

  ⟦⟧M,w,g = {v  W: ⟦⟧M,v,g = 1} 

 

Thus, in world w, SMART(SASHA)  denotes  

{vW: FM(SASHA,v)  FM(SMART,v)} the set of worlds v such that Sasha is smart 

in v.  Interpreting that as the operator , we can have expressions like: 

 

 (1) a. Fred believes that sasha is smart 

                  b. BELIEVE( FRED, SMART(SASHA) ) 

 

(1b) is true in M in world w iff 

        <FM(FRED,w), {vW:FM(SASHA,v)FM(SMART,v)}>  FM(BELIEVE,w) 

 

The pair consisting of Fred and the set of worlds where Sasha is smart stand in the 

believe relation, i.e. Fred stands in the believe relation to the set of worlds where 

Sasha is smart.  
(…) creates an intensional context. 

 

We can go on and constrain the meaning of FM(BELIEVE,w) further. 

For instance, we can assume in the model for each individual d  D and world w a set 

Bd,w, the set of worlds compatible with what d believes in w.  And we can impose a 

meaning constraint on FM(BELIEVE,w) that: 

  

 <d,p>  FM(BELIEVE,w) iff  Bd,w  p 

 

This gives a possible world semantics for believe (Hintikka 1962).  With this semantic 

constraint: (1b) is true in world w if in every world v compatible with what Fred 

believes in in w, Sasha is smart. 

See Stalnaker’s book Inquiry for extensive discussion of this analysis. 
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X. MODALS AS GENERALIZED QUANTIFIERS 

 

We add a term MB ∈ CONprop 

FM(MB,w) = {v ∈ W: R(w,v)} 

 

MB stands for the modal base in w, the set of worlds accessible from w. 

We now add generalized quanfiers relating sets of possible worlds: 

 

EVERYprop, SOMEprop ∈ DETprop 

If α ∈ DETprop then FM(α) ⊆ pow(W) × pow(W) 

    a relation between propositions, sets of possible worlds. 

 

If α ∈ DETprop and p,q ∈ TERMprop then α[p, q] ∈ FORM 

⟦α[p, q]⟧M,w,g = 1 iff <⟦p⟧M,w,g, ⟦q⟧M,w,g> ∈ ⟦α⟧M,w,g 

 

FM(EVERYprop) = {<p,q>: p, q ⊆ W and p ⊆ q} 

FM(SOMEprop)   = {<p,q>: p, q ⊆ W and p ∩ q ≠ Ø} 

 

Fact: □φ = EVERYprop[MB, ∧φ]  

 ◇φ =   SOMEprop[MB, ∧φ] 

 

i.e. 

 

⟦EVERYprop[MB, ∧φ]⟧M,w,g  = 1 iff  

⟦MB⟧M,w,g ⊆ ⟦∧φ⟧M,w,g iff 

{v ∈ W: R(w,v)} ⊆ {v ∈ W: ⟦φ⟧M,v,g = 1} iff 

for every v ∈ W: if R(w,v) then ⟦φ⟧M,v,g = 1 iff 

⟦□φ⟧M,w,v = 1 

 

The generalized quantifier perspective is useful to represent other modals than □ and 

◇, for instance, probably. 
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We have dealt in the nominal domain with cardinality most:  

FM(MOST| |) = {<X,Y>: X, Y ⊆ DM and |X ∩ Y| > |X ― Y} 
 

Most cats are smart: 

MOST||[CAT, SMART] |CAT ∩ SMART| > |CAT ― SMART|   

    More cats are smart than not smart 

 

If we extend the theory with mass nouns, we will need to deal with most that doesn’t 

compare in terms of cardinality but in terms of other measures, like volume or weight: 

 

Let ℝ+ be the set of non-negative real numbers. 

P,Q ⊆ DM 

 

An additive measure is a function µ: pow(DM) →  ℝ+  

such that: µ(0) = 0 and µ(P  Q) = µ(P − Q) + µ(Q − P) + µ(P  Q) 

 

So the weight of the union of the books that A and B own is the weight of the books 

that A owns alone plus the weight of the books that B owns alone, plus the weight of 

the books that A and B jointly own. 

 

Let µ be an additive measure: 

 

FM(MOSTµ) = {<X,Y>: X, Y ⊆ DM and µ(X ∩ Y)> µ(X ― Y)} 
 

Most Marc de Bourgogne is drunk in France 

MOSTµ[ MARC, DIF] µ(MARC ∩ DIF)> µ(MARC ― DIF) 

    More Marc is drunk in France than is drunk abroad 

 

 

Standard probability theory defined a probability measure on pow(W), the set of all 

sets of possible worlds:  

 

Let W be the set of worlds, w ∈ W and P, Q ⊆ W, and let [0,1]ℝ be the set of real 

numbers between 0 and 1. 
  

A probability measure is an additive measure πw: pow(W) → [0,1]ℝ such that πw(W) = 1  

  

Additivity says that the probability that P or Q holds is the probability that P holds but 

not Q plus the probability that Q holds but not Q plus the probability that P and Q 

both hold. 

 

It follows, for instance,  from this that πw(∧¬φ) = 1 ― πw(φ) 

(or in other words:  the more probable ¬φ is the less probable φ is) 

 

We index the probability measure here with w to let w function as a background 

context.  
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With this, we can now propose: 

Let πw be a probability measure. 

 

MOSTπ,w ∈ DETprop 

FM(MOSTπ,w)  = {<p,q>: p, q ⊆ W and πw(P ∩ Q) > πw(P ― Q)} 

 

and we represent probably as: 

 

⟦probably φ⟧Mw,g= 1  iff   ⟦MOSTπ,w[MB, ∧φ]⟧Mw,g = 1 iff 

 πw(MB ∩ ∧φ) > πw(MB ∩ ∧¬φ) 
 

φ is probably in w iff the set of accessible worlds where φ is true is more probable in 

w than the set of accessible worlds where φ is false.  

 

Accessible worlds where φ is true here may be in context w be thought of as futures 

of the present in w where φ gets realized within a given time framl; and accessible 

worlds where φ is false would then be in context w futures of the present in w where 

φ doesn’t get realized within a given time frame. 

 

On that interpretation φ is probable means that the claim that φ is gonna happen in 

the given period is more likely than that φ is not  gonna happen in that period. 

That seems a reasonable interpretation. 
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XI. INDIVIDUAL CONCEPTS 

 

Individual concepts are functions from possible worlds to individuals. 

 

Possible world is short for index, parameter of variation of extensions. So often when 

we say world, we mean world-time, and more specifically world-times where the 

world parameter is kept constant, i.e. times.   

In several of the examples below, the individual concepts we use are functions from 

moments of time to individuals (including degrees on a scale in the first example). 

 

1. THE TEMPERATURE PARADOX (Partee) 

The need for individual concepts is motivated by an analysis of Partee’s temperature 

puzzle: 

 

 (1) The temperature is 90.  [90 F = 32.222 C] 

 (2) The temperature is rising 

hence: (3) Ninity is rising 

 

This pattern is intuitively invalid, but its representation in predicate logic is valid: 

 

 Let TEMP, RISE  PRED1, 90  CON 

 

 (4) (TEMP) = 90 

 (5) RISE((TEMP)) 

Hence: (6) RISE(90) 

 

This is valid by extensionality. 

 

The same problem can be formulated with normal individuals as well: 

 

 (7) The trainer is Michels. 

 (8) The trainer changes. 

Hence: (9) Michels changes. 

 

 Let TRAINER, CHANGE  PRED1, MICHELS  CON 

 

 (10) (TRAINER) = MICHELS 

 (11) CHANGE((TRAINER)) 

Hence: (12) CHANGE(MICHELS) 

 

There is a reading of the pattern in (7)-(9) which is valid, but there is another reading, 

the more prominent one, which is not valid.  It is the latter we are concerned with. 

We find the same ambiguity in (13): (said, say, in 1961). 

 

 (13) The president is a democrat, but he could have been a republican. 

 (14) a. Kennedy could have been a republican 

         b. There could have been a republican president. 

 

It is the (14b) reading that we are interested in. 
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2. ADDING INDIVIDUAL CONCEPTS 

 

We analyze the puzzles with individual concepts.   

 

Individual concepts are functions from world to individuals.   

 

In this section we will add individual concepts as a special kind of individual to the 

predicate logical modal semantics that we have.  That is, we are going to treat 

individual concepts in the same way as we have treated individuals.  That is, we are 

going to have names for individual concepts, variables over individual concepts, 

predicates of individual concepts, quantifiers over individual concepts, and 

abstraction over individual concepts, and all these clauses are in analogy to the 

clauses for individuals we have given before.   

 

This is done systematically in the intensional type logic that Montague developed in 

the sixties and that I teach in Advanced Semantics.  Here I will only introduce what I 

need for the dealing with the examples to come. 

 

Enriching the logical language with individual concepts. 

 

1. We start with the language of predicate logic enriched with the definite article and 

generalized quantifiers, i.e. the language we ended up with in the first part. 

We call the relevant basic sets:  CONind, VARind, TERMind, PREDind
n ,   

 

2. We add the modal operators □ and ◇. 

We give the by now standard modal interpretation for this language in terms of 

models M  that contain <DM, W, RW, FM>. 

 

We will use in what follows domains based on these sets and extend the interpretation 

functions and assignment functions where necessary. 

 

3. We add propositions, relations between individuals and propositions and the 

proposition forming operation ∧, I repeat this from the previous section: 

 

We add set of terms  TERMprop, and the clause and interpretation: 

 

 If φ ∈ FORM then ∧φ  ∈ TERMprop 

 ⟦∧φ⟧M,w,g = {v ∈ W: ⟦φ⟧M,v,g = 1}  

The proposition expressed by φ is the set of all worlds where φ is true. 

 

We add a new set of relations to the language: PRED<ind,prop>
2  and the rules: 

 

 If  P ∈  PRED<ind,prop>
2  then FM(P) ⊆ (DM × pow(W)) 

 A relation between individuals and propositions, like BELIEVE, CLAIM 

 

If  P ∈  PRED<ind,prop>
2  and t ∈ TERMind and p ∈ TERMprop then P(t,p) ∈ FORM 

⟦P(t,p)⟧M,w,g = 1 iff <⟦t⟧M,g, ⟦p⟧M,g> ∈ ⟦P⟧M,g 
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4. We now add individual concepts to the theory. 

 

For clarity I will write individual concept terms, predicates of individual concepts, 

and relations between sets of individual concepts in the colour green. 

 

4a We add a set of individual concept constants, variables and terms: 

 

CONic = {c1, c2, c3} The set of individual concept constants (names of individual  

   concepts) 

VARic = {x1, x2, x3} The set of individual concept variables 

TERMic = CONic ∪ VARic 

 

These expressions are interpreted in the domain of individual concepts: 

 

 (W → DM), the set of all functions from worlds to individuals, is the domain of 

 individual concepts.   

 

So: 

For c ∈ CONic:  FM(c) ∈ (W → DM) 

For x ∈ VARic:    g(x) ∈ (W → DM) 

 

This means that we let assignment functions g be functions from VARind into DM and 

from VARic into (W → DM). 

 

As I said, I will not try to be systematic here but only add enought to the model so that 

I can deal with the examples below:  we do need predicates of individual concepts: 

 

4b. PREDic
1   is the set of one place predicates of individual concepts. 

 If P ∈ PREDic
1   then FM(P) ⊆ (W → DM) 

 Predicates of individual concepts like CHANGE denote sets of individual concepts. 

        

It t ∈ TERMic and P ∈ PREDic
1  then P(t) ∈ FORM  

 ⟦P(t)⟧M,g = 1 iff ⟦t⟧M,g ∈ ⟦P⟧M,g   

 

4c.  We will not introduce Frege-Tarski quantification over individual concepts, but 

generalization quantifiers for them.   

Just as individual determiners denote relations between sets of individuals,  

individual concept determiners denote relations between sets of individual concepts. 

 

 DETic = {EVERY, SOME,...} 

 If α ∈ DETic then: 

 FM(α) = {<X, Y>: X ⊆ (W → DM) and Y ⊆ (W → DM) and rα(|X∩Y|, |X―Y|) 

 

Note that, since rα is a relation between numbers, we do not have to separately define 

rα, we use the same relation rα as before for rα. 

 

 If P, Q ∈ PREDic
1  and α ∈ DETic  then α[P, Q] ∈ FORM 

 ⟦α[P, Q]⟧M,w,g = 1 iff <⟦P⟧M,w,g, ⟦Q⟧M,w,g> ∈ ⟦α⟧M,w,g 
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4d.  We add abstraction over individual concepts to the language: 

 

 If x ∈ VARic and φ ∈ FORM then λx.φ ∈ PREDic
1  

 ⟦x.⟧M,w,g = {f  (W → DM):  ⟦⟧M,w,g𝐱
f  = 1 } 

 

Just as abstracting over an individual variable gives a predicate of individuals, a set of 

individuals,  

 over an individual concept variable gives a predicate of individual concepts, a set of 

individual concepts: 

x. denotes the set of all individual concepts f for which φ is true relative to gx
f  

 

 

5. The operations DOWN() and UP () .  

 

The last thing that we add to the logical language are two operations that relate the 

categories TERMind and TERMic: 

 

 DOWN: From TERMic to TERMind  Extension of α at w 

If α  TERMic, then α  TERMind 

  ⟦α⟧M,w,g = ⟦α⟧M,w,g(w) 

 

α denotes in world w an individual concept, a function f from worlds into individuals. 
α denotes in world w the value of that individual concept f for world w: f(w), the 

individual that is the value of f for world w. 

 

So if  MISTER UNIVERSE denotes at time t0 the function f from times to individuals 

which maps each time t onto the individual who holds at that time t the title Mister 

Universe, then MISTER UNIVERSE denotes at the present time t0 the value of that 

function for time t0, f(t0), which is the individual who currently holds the title (i.e. at 

t0). 

 

 UP: From TERMind to TERMic    Intension of α 

 If α  TERM, then α  i-TERM  

  ⟦α⟧M,w,g is the function in (W →  DM)  

which maps every world v  W onto ⟦α⟧M,v,g, the extension of α in w. 
 

α denotes in world w the individual concept which maps every world v onto the 

denotation  of α in v.   (this is the intension of α) 

 

So, if PRESIDENT  PREDind
1 ,   

(PRESIDENT) denotes in world w the person who is in w the president. 
(PRESIDENT) denotes in world w the function that maps every world v onto the 

person who is in v the president. 

 

We will be more interested in finding the correct readings than in systematically argue 

about how these readings come about in the grammar. 

 

I will assume that rise, change denote properties of functions, and hence are 

interpreted as PREDic
1  predicates RISE, CHANGE  PREDic

1  
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3. THE TRAINER PUZZLE 

 

For the sake of the examples here we think of possible worlds as world-times, and the 

variation in the present section involves the time parameter.  We allow ourselves here 

to be a bit imprecise, and just talk about world-times. 

 

 (7) The trainer is Michels. 

 

We give this the same interpretation as before: 

 

 (7a)    (TRAINER) =  MICHELS 

 the trainer in world w is Michels  

  

       (8) The trainer changes. 

 

Here we change the analysis: change is a predicate of functions, expressing that the 

function is different at later world-times than it is at earlier world-times.   

This can mean various things. 

 

-For instance,  if the function f is constant, i.e. assigns the same individual to all 

relevant worlds-times, the natural interpretation of f  FM(CHANGE,w) is that the 

individual which is the value of f has very different properties at earlier world-

times than at later world times (for instance, a different world-view,  nationality,…) 

 

-On the other hand, when function f is not a constant function, a very natural 

interpretation of f  FM(CHANGE,w) is than the value of f at earlier world times is 

not the same as the value of f at later world-times:  the club changed its trainer, as 

when Rinus Michels resigned in 1973 as trainer of Ajax and was replaced by Stefan 

Kovács.  

It is the latter interpretation that we are interested in here. 

 

Note that we cannot write: 

 

 CHANGE((TRAINER))  # 

 

because that is not well-formed: (TRAINER) is not in TERMic.   

 

We need an expression in TERMic as the argument of CHANGE. 

 

Systematic meaning shift: [type shifting – Advanced Semantics] 

 if α  TERMind and β  PREDic
1  then: 

You can shift from α to α to  resolve type mismatch. 

 

if α  TERMic and β  PREDind
1  then: 

You can shift from α to ∨α to  resolve type mismatch. 
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So we can resolve the mismatch as in (8) by shifting from σ(TRAINER) to 
∧σ(TRAINER): 

 

       (8) The trainer changes. 

 (8a) CHANGE((TRAINER)) 

 

We will assume that in world w (8a) is true precisely because first the trainer was 

Michels and later it was Kovácz:  the interpretation of (TRAINER) in world w is a 

function that maps all relevant earlier world-times onto Michels and all relevant later 

ones onto Kovácz.   

 

 (9) Michels changes. 

 

Again, CHANGE(MICHELS) is unwellformed.  We have to shift MICHELS to 
MICHELS: 

 

(9) Michels changes. 

 (9a) CHANGE(MICHELS) 

 

We get as pattern: 

 

 (7) The trainer is Michels. 

       (8) The trainer changes. 

(9) Michels changes. 

  

(7a) (TRAINER) =  MICHELS 

 (8a) CHANGE((TRAINER)) 

 (9a) CHANGE(MICHELS) 

 

We note two things:   

First, (TRAINER) and MICHELS denote different functions in world w. 
 

(TRAINER) denotes the function f that maps every world v onto the trainer in 

world v, earlier worlds onto Michels, later worlds onto Kovácz. 
 

MICHELS denotes the function g that maps every world onto Michels. 

 

(7a) only says that in our world w these two functions have the same value:  

f(w) =  g(w) = Michels. 

 

Let us assume that z is a world such that f(z)= Kovácz.  Then f(z)  g(z), since 

f(z)=Michels.  hence fg. 

 

This means that (7a) and (8a) do not entail (9a).   

The pattern is invalid, as it should be. 

 

Second, in (8a) change can mean that the function g takes different values at different 

times; in (9a) change can only mean that the individual value of f changes his 

properties, world-view, etc. from earlier world-times to later world-times.   
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4. THE VALID PATTERN: DE RE READINGS 

 

What about the interpretation on which this pattern is valid? 

 

 (7) The trainer is Michels. 

       (8) The trainer changes. 

(9) Michels changes. 

 

On the individual concept analysis, change creates an intensional context.  We can get 

the other reading by assuming that the trainer in (8) can have an interpretation which 

is de re and takes scope over the intensional context.   We can make fruitful use of  

-abstraction to represent this case, as in (8c): 

 

 (7a) (TRAINER) =  MICHELS 

  (8b) x.CHANGE(x) ((TRAINER)) 

  (8c) x.CHANGE(x) (MICHELS) 

 

Now, MICHELS is rigid, so (8c) is equivalent to (9a) 

 

  (9a) CHANGE(MICHELS) 

 

If MICHELS has the property that you have if the function that maps every world 

onto you is a changing function, then the function that maps every word onto Michels 

is a changing function. 

 

Now (8b) is true in world w if whoever is the trainer in world w (i.e. Michels) has in 

world w the property x.CHANGE(x). 

   

x.CHANGE(x) is the property that you have in w if the function that maps every 

world onto you has the change property, which can only mean that its value, you, has 

different properties, world views etc at earlier world-times than it has at later world-

times.   

 

Since the trainer in world w, according to (7a), is Michels, (8a) expresses that Michels 

has the property x.CHANGE(x), which means that the function f that maps every 

world onto Michels has the change property.    

But function f is the denotation of MICHELS, hence, on this reading, (7a) and (8b) 

entail (9b), because, on the assumption that (7a) is true, (8b) and (9b) express the 

same thing. 
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5. THE PRESIDENT 

 

With this instrumentarium we can attack the other problems as well: 

 

 (13) The president is a democrat, but (s)he could have been a republican. 

 

The two readings can be represented as in (14) and (15): 

 

 (14) x.DEMOCRAT(x)  REPUBLICAN(x) ((PRESIDENT)) 

 

The president-function (PRESIDENT) has in w the property that an 

individual concept has if its value in w is a democrat in w, while its value in  

some other world v is a republican in v. 

 

This is equivalent to (14a): 

 

(14a) DEMOCRAT((PRESIDENT))  REP((PRESIDENT))  

 

The value of the president-function in w is a democrat in w and the value of 

the president function in some other world v is a republican in v. 

 

And this is equivalent to (14b): 

 

(14b) DEMOCRAT((PRESIDENT))  REPUBLICAN((PRESIDENT))  

 

The president in w is a democrat in w and in some other world v, the president  

in v is a republican in v.   

 

On this reading (14) is true in the real world w (at time t), where, we assume Kennedy 

is the president (at t), if in some world v accessible from w a republican, for instance, 

Nixon, is president (at time t).   

 

The de re reading we get by giving the individual reading wide scope, as in (15): 

 

 (15) x.DEMOCRAT(x)  REPUBLICAN(x) ((PRESIDENT)) 

 

The president (at t) in w has the property that an individual has if he/she is a  

democrat in world w (at t) and a republican in some other world v (at t).   

 

(15) is equivalent to (15a): 

 

 (15) DEMOCRAT((PRESIDENT))  x.REPUBLICAN(x) ((PRESIDENT)) 

 

 The president in w is a democrat in w and has the property 

x.REPUBLICAN(x), which is the property that you have if in some other  

world you are a republican. 

 

This cannot be reduced any further.   

(14) is true on this reading in the real world w if in some world v accessible from w 

Kennedy is a republican. 
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6. NEW PLANETS 

 

Here  is a little story.  It concerns two astronomical observatories A and B that spot 

the sky in search of new planets.  These observatories are in a fierce competition (on 

is the Sylvanian astronomical centre, and the other the corresponding Bordurian one).  

In fact, the astronomers at observatory B are so competitive that it is a bit unpleasant.  

I tell you (16): 

 

(16)  Every new planet that observatory A claims to have discovered, observatory B  

         claims to have discovered first. 

 

But, in fact, there is an added complication, that both you and I know:  these 

observatories are no good;  they are always wrong, no new planet has ever been 

discovered by either of them. 

 

The crucial observation is that I can assert sentence (16), without committing myself 

to the existence of new planets. 

(It doesn't have to do with the fact that the example has every, the story works just as 

well for other quantifiers.) 

 

Analysis 

 

-We have, inside the relative clause, an intensional context (claim).   

 

-We have, inside the relative clause a gap, which we interpret as a variable that we   

-abstract over at the level of the head of the relative.    

 

-We make the assumption that if a gap is in an intensional context inside the relative 

clause, we have a choice of interpreting the gap as an individual variable (in VARind) 

or as an individual concept variable (in VARic).   

This choice is part of the relativization mechanism and is triggered by the intensional 

context inside the relative clause. 

 

-This gives two interpretations (17a) and (17b): 

 

(17a) EVERY[ x.NEWPLANET(x)  CLAIM(A,DISCOVERED(A,x)) ,                                  

                                                           x.CLAIM(B,DISCOVERED-FIRST(B,x))] 

  

(17a) is true in w if for every new planet existing in w of which A has claimed that 

they discovered it, B has claimed they discovered it first. 

 

(17b) EVERY[ x.NEWPLANET(x)  CLAIM(A,DISCOVERED(A,x)) ,                                  

                                                           x.CLAIM(B,DISCOVERED-FIRST(B,x))] 

 

(17b) is true in w if for every new planet individual concept of which A has claimed 

that they discovered an existing instance of it, B has claimed they discovered an 

existing instance of it first. 
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What are new planet concepts?  We think of those as concepts introduced in the 

discourse context [here the story] and understood as contextually linked to the story 

given: the story introduces individual concepts new planet1 the concept that was 

an issue in, say, 1956, and new planet 2, which was an issue in 1957,….  These 

are tentatively existing ‘objects’, both of which turned out not to be instantiated in 

the real world w.    The predicate NEWPLANET takes these functions in its 

extension, and EVERY hence quantifies over new-planet individual concepts that 

have been made relevant in the discourse.   

A journalist interested in the controversy, will go to the archives and pull out all cases 

of putative new planets. The quantification is over those, and not over individual 

planets. 

 This means that (17b) does not commit the speaker to the existence of new 

planets, it just requires new planet individual concepts to be contextually relevant, as 

in the story given. 

 

In a model, we could have four worlds: w0
 the real world, and w1, w2 w3 the worlds 

compatible with what the Observatories claim 

three relevant individual concepts: 

 

f1: w1 → d1        f2: w1 → d2         f3: w1 → d3  

     w2 → d1  w1 → d2 w1 → d3 

     w3 → d1  w1 → d2 w1 → d3 

     wo → venus w0 → mars w0 → x, where x is an airplane 

 

d1 may be the non-existent planet Vulcanus (which supposedly circles the earth 

shielded from vision by Mercurius. 

d2 is the non-existent planet Ursa Minor Beta (the planet where it is always Saturday 

afternoon, just before the beach bars close). 

d3 is the planet Homoterrae which is postulated by the obscure Israeli astronomer 

Pered Am-ha-aretz. 

 

We assume that:    

{f1, f2, f3}  x.NEWPLANET(x)  CLAIM(A,DISCOVERED(A,x) 
 

Say:  in 1956 A observed Venus and claimed: we have found Vulcanus, ….  

 

 (17b) is true if:  

 

{f1, f2, f3}  x.CLAIM(B,DISCOVERED-FIRST(B,x) 
 

We check the records and find indeed:  in 1956, the same week, the Bordurians say:  

we already made that observation, their spies stole the information from us….  
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7. HOB-NOB SENTENCES 

 

Similar to this are Hob-nob sentences introduced by Peter Geach in Reference and 

Generality 1962  which involve quantification over different people’s belief, again 

without the speaker being committed to the existence of witches.  Geach discusses 

the following case: ((18) is Geach’s example) 

 

 A rumour goes around that there is a witch in the village. 

 Hob says in the pub:  “That explains!  That’s why my horse got sick.” 

 Nob says in church: “And my sow died suddenly! remember?” 

 

 (18) Hob believes that a witch blighted his mare, and Nob believes that she 

 killed his sow. 

 

Again, just giving wide scope, but abstracting over individual variables commits the 

speaker to the existence of witches, as in (19a), but wide scope and abstraction over 

individual concept variables doesn’t, as in (19b):  

 

(19) a SOME[ WITCH,  

      x.BELIEVE(hob, y[MARE(y,hob)  BLIGHT(x,y)])  

                                 BELIEVE(nob, z[SOW(z,nob)  KILL(x,z)])   ] 

 

(19) a SOME[ WITCH,  

                           x.BELIEVE(hob, y[MARE(y,hob)  BLIGHT(x,y)])  

                                BELIEVE(nob, z[SOW(z,nob)  KILL(x,z)])   ] 

 

There is a witch-concept made relevant in the discourse to which both Hob and Nob 

are linked, for instance, via a rumour that both Hob and Nob heared, and in all Hob’s 

belief-worlds, someone instantiates that concept and blighted Hob’s mare, and in all 

Nob’s belief-worlds, someone instantiates that concept and killed Nob’s cow. 

 

 (There is a lot of philosophical literature about exactly what this causal attachment 

condition involves.) 

  

With individual concepts we avoid the conclusion that (18) involves a de re belief of 

Hob and Nob about and individual. 
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XII. MODAL FORMULAS EXPRESSING PROPERTIES OF THE 

ACCESSIBILITY RELATION  

 

Let M = <WM,RM,DM,FM> be a model for L6. 

 

 The frame of M: FM = <WM,RM,DM> 

 

The frame of M is the model minus the interpretation function FM. 

 

In general, a frame is a triple F = <W,R,D>, with W a non-empty set of possible 

worlds, R an accessibility relation on W and D a non-empty set of possible 

individuals.  

 

A model, then is a pair M = <F,F>, with F a frame and F an interpretation function for 

the lexical items. 

 (A set-theoretic subtelty: we don’t distinguish between  <F,F> (= <<WF,RF,DF>,F>) 

and <WF,RF,DF,F>.) 

 

Let φ be an L6 sentence. 

We define φ is true on frame F = <WF,RF,DF> 

 

 ⟦φ⟧F = 1, φ is true on frame F iff  

for every interpretation function F for L6 such that <F,F> is a model for L6:  

 ⟦φ⟧<F,F> = 1; otherwise ⟦φ⟧F = 0 

 

φ is true on frame F iff for every interpretation function F for F,  

  φ is true on model <F,F>, false on F otherwise. 

 

Intuitively, φ is true on a frame F iff φ is true in virtue of the structure of the frame, 

independent of the interpretation of the lexcal items. 

 

Let ℱ P be the the class of all frames F in which the accessibility relation RF has 

 property P.   

 

 Property P of accessibility relations is modally definable, definable in L6 iff  

 there is an L6 formula φ which is true on all the frames in class ℱ P and false on  

 every frame not in ℱ P. 

 

This means, vive versa, that you can check what property of accessibility relations, if 

any, is defined by a formula φ: 

 

 -φ modally defines P iff   

1. For every frame F ∈ ℱ P and every interpretation function F:⟦φ⟧<F,F> = 1 

2. For every frame F ∉ ℱ P there is an interpretation function F such that:⟦φ⟧<F,F> = 0 

 

As above, let us use φ for a contingent non-modal sentence, a formula (without free 

variables) that can be made true in some worlds and false in others  

(like SMART(RONYA) ). 

 

Here are some of the basic facts (going back to Kripke’s work): 



 62 

 

FACT 1: □φ → φ defines reflexivity of the accessibility relation. 

 

1. If F is a reflexive frame, a frame where RF is reflexive then □φ → φ is true on F 

 

Proof: 

Let F be a reflexive frame, and w ∈ WF and let F be any interpretation function such 

that  ⟦□φ⟧<F,F>,w = 1. 

Then for every v ∈ WF:  if RF(w,v)} then ⟦φ⟧<F,F>,v = 1. 

Since RF is reflexive, RF(w,w) and hence ⟦φ⟧<F,F>,w = 1. 

 

a picture: 

       If □φ is true in w, φ is true in all the  
      accessible worlds, one of which is w, 
      by reflexivity 

 

 

 

 

 

 

Hence ⟦□φ → φ⟧<F,F>,w = 1 

So □φ → φ is true in every world in WF if  RF is reflexive. 

 

2. If F is not a reflexive frame then, we can make a counterexampe, we can choose an 

interpretation function F and a world w where  ⟦□φ → φ⟧<F,F>,w = 0, which is a world 

w where ⟦□φ⟧<F,F>,w = 1 but ⟦φ⟧<F,F>,w = 0 

We choose a world w such that <w,w> ∉ RF.  Then we choose an interpretation 

function F that makes φ true in every world v ∈ WF such that RF(w,v), but false in w: 

 

      If the frame is not reflexive you can make  

      φ true in all worlds accessible from w 

      but false in w.  

      That situation is the required counterexample. 

 

 

 

 

 

By the assumption about the contingency of φ we  can do that. 

Hence ⟦□φ → φ⟧<F,F>,w = 0 

 

So, indeed □φ → φ is true on every reflexive frame (true in every world), 

and false on non-reflexive frames (meaning, not true in every world). 

 

Hence indeed, (□φ → φ) defined (or characterizes) the class of frames with a reflexive 

accessibility relation and (□φ → φ) expresses that the accessibility relation is reflexive. 
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FACT 2: □φ → □□φ defines transitivity of the accessibility relation. 

 

1. If F is a transitive frame, a frame where RF is transitive then □φ → □□φ is true on F 

 

Step 1:  Assume □φ is true in w. Then φ is true in all accessible worlds: 

 

       

       

      .  

       

 

 

 

 

 

Look at all the worlds accessible from v1, v2, v3, say: 

 

 

  

       

       

      .  

       

 

 

 

 

 

 

 

By transitivity these worlds are accessible from w, and hence φ is true in them as 

well: 

 

 

  

       

       

      .  

       

 

 

 

 

 

 

 

But that means that for each world v which is accessible from w, φ is true in all 

worlds accessible from v, and hence □φ is true in v. 

This shows that □φ is true in all worlds accessible from w: 
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      .  

       

 

 

 

 

 

 

 

But if □φ is true in all worlds accessible from w, then □□φ is true in w: 

 

 

 

  

       

       

      .  

       

 

 

 

 

 

 

 

And that means that □φ → □□φ is true in w.  

 

If RF is not transitive you easily make a counterexample: 

 

 

  

       

       

      .  
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You make φ true in all worlds accessible from w, including v2, and false in some 

worlds accessible from v2, but not from w. This is perfectly possible in RF is not 

transitive, and is a counterexample. 

 

 

FACT 2: ◊□φ → φ defines symmetry of the accessibility relation. 

 

1. If F is a symmetric frame then ◊□φ → φ  is true on F 

 

Assume ◇□φ is true in w. 

Then for some accessible world □φ is true, say v1. Then in all worlds accessible from 

there φ is true.  One of those is w, by symmetry: 

 

 

 

       

       

      .  

       

 

 

 

 

Hence ◊□φ → φ is true in w.   
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Priorian Tense logic 

 

In tense logic, the set of worlds WF is renamed TF, the set of moments of time, and 

the accessibility relation RF is renamed <F and is assumed to be a strict partial order of 

earlier than. 

In Priorian tense logic we introduce four tense operators, two futurate and two past: 

P at some time in the past 

H at every time in the past 

 F at some time in the future 

 G at every time in the future 

 

with the obvious semantics: 

 

 ⟦Pφ⟧M,t,g = 1 iff for some t’ ∈ TM: t’ < t and ⟦φ⟧M,t’,g = 1  
 ⟦Hφ⟧M,t,g = 1 iff for every t’ ∈ TM: if t’ < t then ⟦φ⟧M,t’,g = 1  
 

 ⟦Fφ⟧M,t,g = 1 iff for some t’ ∈ TM: t < t’ and ⟦φ⟧M,t’,g = 1  
 ⟦Gφ⟧M,t,g = 1 iff for some t’ ∈ TM: if t < t then ⟦φ⟧M,t’,g = 1  
 

If you find modal definability interesting, you will find tense logical definability even 

more interesting. 

In tense logic Hφ → HHφ defines transitivity (and so does and Gφ → GGφ ). 

Hφ → ¬HHφ is logically equivalent to  PP¬φ → ¬φ 

 

Hφ → HHφ   ⇔ ¬HHφ → ¬Hφ  ⇔ P¬Hφ → P¬φ ⇔ 

PP¬φ → P¬φ 

 

That means that the formula PPφ → Pφ also defined transitivity. 

What about Pφ → PPφ? 

As it turns out Pφ → PPφ expresses that the temporal order is dense: between any two 

points of time there is a third.   

Intuition: 

 
 
 

 

 

 

 

Assume that Pφ is true at t0.  Then at some past moment, say, t2 φ is true.   

By density there is a point between t2 and t0, say, t1, and since φ is true at t2, Pφ is 

trua at t1, because t2 is in the past of t1.  But then PPφ is true at t0, because t1 is in the 

past of t0. 

Again, giving a counterexample on a non-dense frame is simple. 
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XIII. SEMANTICS AND PRAGMATICS OF CONDITIONALS 

 

(1) a.  It is not the case that if it rains it is cold. 

      b. It rains and it isn't cold. 

      c. It may rain and not be cold. 

   
Problem: (φ → ψ)      (φ  ψ) material implication → 

Intuitively: (φ  ψ)     ◊(φ  ψ) natural language implication  

That means:    (φ  ψ)  ◊(φ  ψ) 

          □(φ  ψ) 

            □(φ → ψ) 

 

Thus: conditionals are modals. 

 

In the following discussion we will assume an informational interpretation of the 

modals □, ◊ and . 

By this, I mean the following.   

We will assume in our models an accessibility relation I.   

 

The modal base I represents: what follows from or is compatible with the  

conversional information. 

 

This means: 

 

 For every world w  W: {v  W: I(w,v)} is the set of all worlds 

compatible with conversational information in w. 

 Notation: Iw = {v  W: I(w,v)} 

 

 We introduce the set of all worlds where φ is true: 

  

⟦φ⟧M = {w  W: ⟦φ⟧M,w = 1} 

 

As usual: 

 

 ⟦□φ⟧M,w = 1 iff for every v  Iw: ⟦φ⟧M,v = 1 

 □φ is true in w iff φ follows from the information in w. 

 

Equivalently: 

 

 ⟦□φ⟧M,w = 1 iff Iw  ⟦φ⟧M 

 

 ⟦◊φ⟧M,w = 1 iff for some v  Iw: ⟦φ⟧M,v = 1 

 ◊φ is true in w iff φ is compatible with the information in w. 

 

Equivalently: 

 ⟦◊φ⟧M,w = 1 iff Iw  ⟦φ⟧M  Ø 
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 ⟦(φ  ψ)⟧M,w = 1 iff for every v  Iw : if ⟦φ⟧M,v = 1 then ⟦ψ⟧M,v = 1 

 

Equivalently: 

 

 ⟦(φ  ψ)⟧M,w = 1 iff Iw  ⟧φ⟧M  ⟦ψ⟧M 

 

 Iw  ⟦φ⟧M is the result of adding φ to your information 

 (φ  ψ) is true in w iff ψ follows from the result of adding φ to Iw. 
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GRICE'S MAXIM OF QUALITY. 

 "Do not say what you know not to be true." 

 

CASE A: Non-modal statements. 

 Only say φ in w if φ follows from your information. 

 

 Quality for non-modal statements φ:  

 Say φ in w only if □φ is true in w 

 

CASE B: Modal statements. 

Modal statements are already themselves about I: 

 

 Quality for modal statements φ:  

 Say φ in w only if φ is true in w 

 

So: 

 Quality for (φ  ψ): 

 Say (φ  ψ) in w only if (φ  ψ) is true in w 

 

 

IRRELLEVANT ENTAILMENTS 

 

FACT 1: □ψ  (φ  ψ) 

 

Reason: If ψ is true in every world compatible with the information, then ψ is also  

              true in every world compatible with the information where φ is true. 

 

FACT 2: □φ  (φ  ψ) 

 

Reason: If φ is false in every world compatible with the information, then ψ is true in  

              every world compatible with the information where φ is true. 

 

Hence:  

 

both □ψ and □φ are semantically stronger statements than (φ  ψ). 

 

In all the following discussion, we assume that φ and ψ themselves are non-modal 

statements. 

 

For non-modal statements, Quality says:   

only say ψ if □ψ is true 

only say φ if □φ is true 

 

We conclude: 

 

 With the maxim of quality: 

   ψ is pragmatically a stronger statement than (φ  ψ) 

 φ is pragmatically a stronger statement than (φ  ψ) 
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GRICE'S MAXIM OF QUANTITY. 

 "Give as much information as you can (but not more than is necessary)" 

 

 Quantity: 

 If φ is pragmatically stronger than ψ, and both are relevant, etc., then you  

should say φ rather than ψ. 

 

Consequently: 

 

 If (φ  ψ) is true in w and □ψ is true in w,  

then, according to the maxims, you should say ψ rather than (φ  ψ) 

 

If  (φ  ψ) is true in w and □φ is true in w,  

then, according to the maxims, you should say φ rather than (φ  ψ) 

 

 If  (φ  ψ) is false in w, you shouldn't say (φ  ψ) at all in w. 
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The square of informational situation types for (φ  ψ). (Veltman 1986) 

 

(1) □φ 

      □ψ  

(2) □φ 

      ◊ψ ◊ψ 

(3) □φ 

      □ψ 

(4) ◊φ ◊φ 

      □ψ 

(5) ◊φ ◊φ 

      ◊ψ ◊ψ 

(6) ◊φ ◊φ 

      □ψ  

(7) □φ 

      □ψ 

(8) □φ 

      ◊ψ ◊ψ  

(9) □φ 

      □ψ  

 

These are all the possible logical informational situations with respect to φ and ψ: 
φ can follow from the information, φ can be incompatible with the information, of 

both φ and ¬φ can be compatible.  The same for ψ.   
That gives 9 combinations. 

 

But now we argue: 

 

FACT 1: In situation types (2), (3) and (6), (φ  ψ) is false.   

               Hence, the assertion of (φ  ψ) in situations of type (2), (3) or (6) violates  

               Quality. 

 

namely:  (φ  ψ) is false in w iff ◊(φ  ψ) is true in w. 

 

-In every world w of type 2, φ is true in every world in Iw (since □φ is true in w). 

 In some world v in Iw ψ is true (since ◊ψ is true in w).   

 Hence in that world v in Iw (φ  ψ) is true. 

 Hence ◊(φ  ψ) is true in w. 

 Hence (φ  ψ) is false in w. 

 

-In every world w of type 6, ψ is true in every world in Iw (since □ψ is true in w). 

 In some world v in Iw φ is true (since ◊φ is true in w).   

 Hence in that world v in Iw (φ  ψ) is true. 

 Hence ◊(φ  ψ) is true in w. 

 Hence (φ  ψ) is false in w. 

 

-In every world w of type 3, φ is true in every world in Iw and ψ is true in every 

world in Iw, hence in every world v in Iw (φ  ψ) is true in v. 

Now, we make the plausible pragmatic assumption that the information so far in w 

is consistent.  This assumption says that Iw  Ø. 

This means that there is a world v in Iw, and hence ◊(φ  ψ) is true in w. 

Hence (φ  ψ) is false in w. 

 

This means that the these cases are not compatible with Gricean Felicity: 
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(1) □φ 

      □ψ  

  (2)     (3) 

       

(4) ◊φ ◊φ 

      □ψ 

(5) ◊φ ◊φ 

      ◊ψ ◊ψ 

(6)        

(7) □φ 

      □ψ 

(8) □φ 

      ◊ψ ◊ψ  

(9) □φ 

      □ψ  

 

 

FACT 2:  In situations of type (1), (4) and (7), assertion of (φ  ψ) violates quantity. 

 

Namely, in these situations □ψ is true. 

Since ψ is a pragmatically stronger statement than (φ  ψ), you should, by quantity,  

in such situations assert ψ rather than (φ  ψ). 

 

This means that the these cases are not compatible with Gricean Felicity: 

 

 

(1) 

       

 (2)      (3) 

       

(4) 

       
(5) ◊φ ◊φ 

      ◊ψ ◊ψ 

 (6)       

 (7)      (8) □φ 

      ◊ψ ◊ψ  

(9) □φ 

      □ψ  

 

 

FACT 3:  In situations of type (7), (8) and (9), assertion of (φ  ψ) violates quantity. 

 

Namely, in these situations □φ is true. 

Since φ is a pragmatically stronger statement than (φ  ψ), you should, by quantity,  

in such situations assert φ rather than (φ  ψ). 

 

This means that the these cases are not compatible with Gricean Felicity: 

 

(1) 

       

(2)       (3) 

       

(4) 

       
(5) ◊φ ◊φ 

      ◊ψ ◊ψ 

(6)        

 (7)      (8) 

       

(9) 

 

 

 

   From this we conclude: 

 

CORROLLARY: The only situations where (φ  ψ) is asserted in accordance with  

     Quality and Quantity are situations of type (5). 
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Hence: 

 

 Assertion of (φ  ψ) conversationally implicates ◊φ, ◊φ, ◊ψ, ◊ψ. 

 These implicatures are called the clausal implicatures of (φ  ψ).  
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Relevance. 

 

Situation types (1), (4), (7), (8), (9) are situation types where the conditional  

(φ  ψ) is true for irrellevant reasons:  

the conditional is true, not because there is a relevant connection between the truth of 

φ and the truth of ψ, but because of some facts about φ or some facts about ψ. 

 

Situation type (5) excludes these irrelevant reasons: in situations of type (5), the 

conditional is true because all φ-worlds in Iw are ψ-worlds. 

 

In the picture below we partition the set of all worlds into four parts:  the set of worlds 

where φ and ψ are both true, the set of worlds where φ and ψ are both false, the set of 

worlds where φ is true but ψ false, and the set of worlds where ψ is true but φ false: 

     

       φ ψ      φ ψ      W 

 

 

 

 

        

 

 

        φ ψ     φ ψ 

 

 

Now we let w be any world in W of type (5) where (φ  ψ) is true.   

This means that Iw lies inside W in the following way: 

If (φ  ψ) is uttered in accordance with the maxims, 

     

       φ ψ      φ ψ      W 

 

     Iw      

 

 

        

 

 

        φ ψ     φ ψ 

 

The information Iw does  not overlap the set of worlds where (φ  ψ) is true. 

Now, there must be a reason why your information is structured this way. 

As you can see from the picture, it's not because you already know that ψ is true, or 

that you already know that φ is false.  You know neither. 

The reason will have to do with some independent connection between φ and ψ that 

you assume: 
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For instance, assume (φ  ψ) is If it rains it is cold. 

 

-The reason may be something like the following: 

a.) Iw is restricted to worlds that respect the laws of nature, one of them being that:      

      rain is produced by excessive humidity. 

b.)  Iw is restricted to worlds that respect a meteorological fact about Holland: in 

      Holland, excessive humidity only happens at low temperatures. 

c.) Iw is restricted to worlds where you are in Holland.     

With these three assumptions about Iw, Iw will not contain worlds where it rains but 

isn't cold.  Hence If it rains it is cold is true in w (relative to Iw, of course). 

 

So:  If your information contains the information that you are in Israel, your 

informational situation may be: 

     

       rain + cold     rain +  cold     W 

 

     Iw      

 

 

        

 

 

        rain + cold   ¬rain +¬cold 

 

And your information does not support: If it rains it is cold. 

 

But, if your information contains the information that you are in Holland, it will look 

like: 

     

       rain + cold     rain +  cold     W 

 

     Iw      

 

 

        

 

 

        rain + cold   ¬rain +¬cold 

 

And if it rains it is cold is true in w (relative to Iw)  
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The reason may be something quite different, for instance: 

 

You know that (i.e. in every world in Iw it is true that) John owns a mackintosh, a 

leather motorcycle coat, and an afghan coat and he always wears one of them. 

But you also know that:  

-When it is cold, John wears his leather coat when it rains and his Afghan coat when it 

doesn't rain (they are both warm).   

-When it is warm, he wears his macintosh when it rains,  

-but when it is warm and dry he wears his leather coat, because that is when he rides 

his motorcycle (a family heirloom that he wouldn't ride in the rain or in the cold).   

 

The picture that represents this information is indicated below: 

 

                     A             B 

rain                        cold 

LEATHER COAT 

 

dry                   cold 

AFGHAN COAT 

 

MACINTOSH 

rain                     warm 

LEATHER COAT 

dry                warm 

     C             D 

 

Now look at the following dialogue: 

 

A:  Is it cold out, dear? 

 B   [Looking out of the window, seeing John pass by wearing his leather coat] 

      If it rains, it is. 

 

The information as updated with the proposition that John is wearing his leather coat 

is:                     A             B 

rain                        cold 

LEATHER COAT 

 

 

 

 LEATHER COAT 

dry                warm 

     C             D 

 

In other words:  you know now that it is either cold and rainy or dry and warm.   

If it rains, it is not dry and warm, hence cold. 

    

Given these informational options, it is indeed true that if it rains it is cold. 
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Pragmatic relevance versus semantic relevance. 

 

We do not semantically require the truth of (φ  ψ) to express a relevant connection 

between the truth of φ and the truth of ψ.   

This means: we do not make  (φ  ψ) false in situations of type (1), (4), (7), (8), (9) 

for two important reasons: 

 

1. (φ  ψ) is pragmatically incorrect in these situations anyway. 

So we don't have to put relevance into the semantics to explain the 'funnyness' of an 

inference:  "ψ, hence (φ  ψ)." 

 

2. We use this semantics, the maxims, and the above square of situation types to 

explain the usage of rhetorical conditionals. 
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USING ROWS AND COLUMNS IN RHETORICAL CONDITIONALS 

(Veltman 1986) 

 

BASIC ASSUMPTION 1: (Except in irony, which we are not studying here) 

 We assume that the assertion of (φ  ψ) is made in accordance with the  

maxim of Quality, whether or not the conditional is rhetorical or not. 

 

BASIC ASSUMPTION 2: 

 Rhetorical conditionals are relevance connection violations: 

 Their assertion signals that there isn't a relevant connection between the  

truth of φ and the truth of ψ.  

This means that the assertion of a rhetorical conditional signals that  

situations of type (5.) do not obtain. 

 

Rhetorical Conditionals: 

COL. 1  COL. 2  COL. 3   

(1) □φ 

      □ψ 

(2)  (3)  ROW 1 

(4) ◊φ ◊φ 

      □ψ 

(5)  (6)  

        

ROW 2 

(7) □φ 

      □ψ 

(8) □φ 

      ◊ψ ◊ψ  

(9) □φ 

      □ψ  

ROW 3 

 

Note: 

On row 1:       (1) is the only available type of situation. 

On row 2:       (4) is the only available type of situation. 

On column 2: (8) is the only available type of situation. 

On column 3: (9) is the only available type of situation. 

Situation type (7) is the only type of situation that is not the only available type at any 

row or column. 

 

ASSUMPTION 3: 

 Rhetorical conditionals use rows and columns. 

 They signal that situation type (5) does not obtain, and instruct you to  

find a row or column, where only one type of situation is available, and  

derive the consequences from that.   

 

Consequently: situation type (7) is not available for rhetorical conditionals. 

The idea here is that situation type (7) gives an ambiguous instruction. 

We get: 
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The square of informational possibilities for rhetorical conditionals: 

 

COL. 1  COL. 2  COL. 3   

(1) □φ 

      □ψ 

(2) (3) ROW 1 

(4) ◊φ ◊φ 

      □ψ 

(5) (6) 

        

ROW 2 

(7) (8) □φ 

      ◊ψ ◊ψ  

(9) □φ 

      □ψ  

ROW 3 

 

All examples are from Veltman 1986. 

 

TYPE 1 

(1) She's on the wrong side of fourty, if she is a day.    ψ, if φ 

(2) If there's anything I can't stand, it's getting caught in rushhour traffic if φ, ψ 

 

Analysis of (1): 

Obviously, she is at least a day: □φ is true in w. 

We look in the table, and see that only type 1 is compatible with this. 

We conclude: □ψ is true in w.   

Thus (1) is a rhetorical way of saying ψ: She's over fourty. 

 

Analysis of (2): 

Obviously, there is at least something I can't stand (since I am human). 

Again, □φ is true in w. 

We conclude: (2) is a rethorical way of saying ψ: I can't stand being caught in 

rushhour traffic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 80 

 

COL. 1  COL. 2  COL. 3   

(1) □φ 

      □ψ 

(2) (3) ROW 1 

(4) ◊φ ◊φ 

      □ψ 

(5) (6) 

        

ROW 2 

(7) (8) □φ 

      ◊ψ ◊ψ  

(9) □φ 

      □ψ  

ROW 3 

 

 

TYPE 9 

(3)  If this is true, then I'm the empress of China.  If φ, then ψ 

(4)  If this happens, I'll eat my hat.    If φ, then ψ 

(5)  I'll be hanged, if that happens.    ψ, if φ 

(6)  If this is true, I am a Dutchman/a monkey's uncle. If φ, then ψ 

 

Analysis of (3): (the other cases are similar) 

Obviously, I am not the empress of China. 

□ψ is true in w. 

We look in the table and see that only type (9) is compatible with this. 

We conclude: □φ is true in w. 

Thus (3) is a rhetorical way of saying φ: This isn't true. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 81 

COL. 1  COL. 2  COL. 3   

(1) □φ 

      □ψ 

(2) (3) ROW 1 

(4) ◊φ ◊φ 

      □ψ 

(5) (6) 

        

ROW 2 

(7) (8) □φ 

      ◊ψ ◊ψ  

(9) □φ 

      □ψ  

ROW 3 

 

 

TYPE 4 

(7)  There's coffee in the pot, if you want some.   ψ, if φ 

(8)  I paid back that fiver, if you remember.    ψ, if φ 

(9)  If I may interrupt you, you're wanted on the telephone.  if φ, ψ 

 

Analysis: 

Note first that all these cases are clearly relevance violations: 

you wanting coffee, doesn't make there to be coffee in the pot,  

unless you're a magician, which you're not. 

 

These cases are all cases, where politeness considerations require us to assume that: 

 ◊φ and ◊φ are true in w. 

-Maybe you want coffee, maybe not (it would be impolite of me to assume that I 

know what you want). 

-You may remember, you may not (don't even think I am suggesting that you know it 

very well). 

-Maybe I am allowed to interrupt you, maybe not (of course, I can't look in the mind 

of really busy people). 

 

We look in the table, and see that only type (4) is compatible with this. 

We conclude: □ψ is true in w. 

Hence (7)-(9) are rhetorical ways of saying ψ: 

 -There is coffee in the pot. 

 -I did pay back that fiver. 

 -You're wanted on the telephone. 
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COL. 1  COL. 2  COL. 3   

(1) □φ 

      □ψ 

(2) (3) ROW 1 

(4) ◊φ ◊φ 

      □ψ 

(5) (6) 

        

ROW 2 

(7) (8) □φ 

      ◊ψ ◊ψ  

(9) □φ 

      □ψ  

ROW 3 

 

 

TWO MORE CASES OF TYPE 4 

 

(10) This is the best book of the month, if not the year. ψ, if φ 

 

This case is similar, but can be argued also in a different way. 

We assert: (φ  ψ)   

 

The situation type is once again: ◊φ and ◊φ are true in w. 

Maybe it is the best book of the year, maybe not.  

So we could, following type 4, conclude □ψ. 

 

But this time you also know something else: 

 

 (φ  ψ) is trivially true, true in all worlds.  

 

If it is the best book of the year, it is the best book of the month. 

 

This means that in asserting (φ  ψ), we can conclude, with quality and the above 

fact: 

 (φ  ψ)  (φ  ψ) is true in w.  

 

But:  (φ  ψ)  (φ  ψ)  □ψ 

So also in this way we conclude: □ψ is true in w: 

(10) is a rhetorical way of saying ψ: This is the best book of the month. 
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COL. 1  COL. 2  COL. 3   

(1) □φ 

      □ψ 

(2) (3) ROW 1 

(4) ◊φ ◊φ 

      □ψ 

(5) (6) 

        

ROW 2 

(7) (8) □φ 

      ◊ψ ◊ψ  

(9) □φ 

      □ψ  

ROW 3 

 

 

(11) If there's anything you need, my name is Marcia.  

 

(11) has two natural uses, one of type (5) (a normal conditional), one of type (4). 

 

Type 5: (11) is really short for (11') 

 

(11') If there's anything you need, call for me, Marcia. 

 

My name is Marcia is like an appositive on a suppressed consequent: call for me. 

(11') is a normal relevant conditional with an appossitive. 

 

 

Type 4: 

Your needing something doesn't make my name Marcia. 

I am a polite waitress, so of course I don't assume that I know whether you will be 

needing something or not. 

But this restaurant is in California, and in restaurants in California waitresses are not 

just serving machines, but real persons, who have names (but note, only first names, 

we are, after all, in America).  

(11) is my polite way of telling you that my name is Marcia. 
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COL. 1  COL. 2  COL. 3   

(1) □φ 

      □ψ 

(2) (3) ROW 1 

(4) ◊φ ◊φ 

      □ψ 

(5) (6) 

        

ROW 2 

(7) (8) □φ 

      ◊ψ ◊ψ  

(9) □φ 

      □ψ  

ROW 3 

 

 

TYPE 8 

(12) If it doesn't rain tomorrow, then it's going to pour.  If φ, then ψ 

(13) [Muhammed Ali:] If I don't beat him, I'll thrash him.  If φ, then ψ 

 

These cases are similar to example (10). 

You can argue that I don't know whether it is going to pour tomorrow or not. 

Even Ali doesn't know whether he is going to thrash him or not. 

So:  ◊ψ and ◊ψ are true in w. 

This is only the case in situation type (8), so you can conclude □φ, since the 

antecedent of the conditional was φ.  □φ  □φ, so we conclude □φ. 

 

As in the case of example (10), there is another way of analyzing the case: 

 

 (ψ  φ) is trivially true, true in all worlds. 

 

 If it is going to pour, it is going to rain. 

 If I'll thrash him, I'll beat him. 

 

So, again, from quality and the above fact we conclude: 

 

 (φ  ψ)  (ψ  φ) is true in w. 

 

But:  (φ  ψ)  (ψ  φ)  □φ. 

 

So we conclude: □φ is true in w. 

Hence, (12) and (13) are rhetorical ways of saying φ (the negation of the antecedent): 

 -It's going to rain. 

 -I'll beat him. 
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CONCLUSION: The modal semantics of the conditional and the informational 

interpretation of the maxims explains the relevance constraint on the normal use of 

the conditional, and it explains the interpretations of rhetorical conditionals. 
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Summary of rows and columns for rhetorical conditional: 

 

TYPE ASSERTION BACKGROUND CONCLUSION CONVEYS 

1 (φ  ψ) □φ □ψ ψ 

4 (φ  ψ) ◊φ ◊φ □ψ ψ 

8 (φ  ψ) ◊ψ ◊ψ □φ φ 

9 (φ  ψ) □ψ □φ φ 

 

Given our assumptions, these are the only things that can be conveyed by the 

assertion rhetorical conditionals. 

 

In general, if assert a conditonal (φ  ψ) and we signal by rhetorical means that 

situation type (5) is unavailable, then: 

-we convey ψ, if we make clear that φ is compatible with the information  

(cases 1 and 4). 

-we convey φ, if we make clear that ψ is compatible with the information  

(cases 8 and 9). 

 

This generalization relies on the plausible assumption (that we made earlier) that Iw is 

not empty.  In that case, □φ entails ◊φ, and □ψ entails ◊ψ, so that we can reduce 

case (1) to case (4), and case (9) to case (8).  

 

In other words, on the assumption that Iw is not empty, there are really two main 

situation types: 

 

 (1) We assert (φ  ψ) in w. 

 (2) We signal that situation type (5) is unavailable. 

 (3) ◊φ is true in w. 

 We conclude: ψ 

 A rhetorical conditional conveys the consequent, if the antecedent is  

compatible with the information. 

 

 (1) We assert (φ  ψ) in w. 

 (2) We signal that situation type (5) is unavailable. 

 (3) ◊ψ is true in w. 

 We conclude: φ 

  A rhetorical conditional conveys the negation of the antecedent, if the  

negation of the consequent is compatible with the information. 

 

This works, on the assumption of rows and columns that we made (assumption 3): 

 

Rhetorical conditionals ignore the cases where both the consequent and the negation 

of the antecedent follow from the information (cases of type 7).   

 

One would think that the latter is, because in cases of type (7), the instruction is 

ambiguous:  the hearer wouldn't know whether the speaker wants him or her to to use 

the negation of the antecedent to conclude the consequent, or the consequent to 

conclude the negation of the antecedent. 
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In the philosophical literature rhetorical conditionals are called Bisquit conditionals, 

based on an early example in the literature.  Rhetorical conditionals is a better term, 

so I use that here. 

 

Similar arguments can be made for rhetorical disjunctions: 

 

Informationally, again, you should only say φ ∨ψ is □(φ ∨ ψ) ist true.  

We derive here too that the normal utterance situation for a conditional is is the 

situation:  ◇φ, ◇¬φ, ◇ψ, ◇ψ.  

 

Look at the square: 

The square of informational situation types for □(φ∨ψ) .  

 

(1) □φ 

      □ψ  

(2)  □φ 

      ◊ψ ◊ψ 

(3) □φ 

      □ψ 

(4) ◊φ ◊φ 

      □ψ 

(5) □(φ∨ψ)  

      ◊φ ◊φ 

      ◊ψ ◊ψ 

(6) □(φ∨ψ)  

      ◊φ ◊φ 

      □ψ  

(7) □φ 

      □ψ 

(8) □(φ∨ψ)  

      □φ 

      ◊ψ ◊ψ  

(9) □φ 

      □ψ  

In situations 1,2,3,4,7 □(φ∨ψ)  is true because a stronger statement is true. 

In situation 9 □(φ∨ψ)  is false. 

 

In situation 5, 6, and 8 we would violate quality unless we restrict ourselves to the 

part where □(φ∨ψ) is true.   So we do that (in red) 

But then in situation 6 also □φ is true and in 8 □ψ is true, so these too are situations 

where you should have made a stronger statement.  

Hence, here too, the only situation where you can utter the disjunction in agreement 

with the maximes is situation (5). 

 

Here the natural rhetorical case is a situation where □¬ψ will allow you to conclude 

that □φ, and hence φ: 

 

(1) I’ll find him, or my name isn’t Sherlock Holmes. 

       


